Opened at 11:53 pm
 (DO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU A ARE ASKED TO DO SO) PG(Hons)-EE-June, 2023
 Mathematics (Hons.) Five Year Integrated
 Sr. No.
 \qquad
 Time: 11/4 Hours
 Roll No. (in figures)
 \qquad Max. Marks : 100
 Total Questions : 100 (in words)
 \qquad Name
 \qquad Date of Birth
 \qquad
 Father's Name
 \qquad Mother's Name
 \qquad Date of Examination
 \qquad

(Signature of the Candidate)
(Signature of the Invigilator)
CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

1. All questions are compulsory.
2. The candidates must return the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfairmeans / mis-behaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
4. Question Booklet along with answer key of all the A, B, C \& D code shall be got uploaded on the University Website immediately after the conduct of Entrance Examination. Candidates may raise valid objection/complaint if any, with regard to discrepancy in the question booklet/answer key within 24 hours of uploading the same on the University Website. The complaint be sent by the students to the Controller of Examinations by hand or through email. Thereafter, no complaint in any case, will be considered.
5. The candidate must not do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers must not be ticked in the question booklet.
6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
7. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
8. Before answering the questions, the candidates should ensure that they have been supplied correct and

Complaints, if any, regarding misprinting etc. will not be entertained 30 \min examination.

Mathematics (Hons.) Five Year Integrated

Max. Marks : 100 (in words) \qquad
Roll No. (in figures) \qquad
Name \qquad Date of Birth \qquad
Father's Name \qquad Mother's Name \qquad
Date of Examination \qquad

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

1. All questions are compulsory.

2. The candidates must return the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfairmeans / mis-behaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
4. Question Booklet along with answer key of all the $A, B, C \& D$ code shall be got uploaded on the University Website immediately after the conduct of Entrance Examination. Candidates may raise valid objection/complaint if any, with regard to discrepancy in the question booklet/answer key within 24 hours of uploading the same on the University Website. The complaint be sent by the students to the Controller of Examinations by hand or through email. Thereafter, no complaint in any case, will be considered.
5. The candidate must not do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers must not be ticked in the question booklet.
6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
7. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
8. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.
9. If $A=\{x, y\}$, then which of the following statement is true ?
(1) $\phi \in A$
(2) $y \subseteq A$
(3) $\{y\} \in A$
(4) $\{x\} \subseteq A$
10. If A is any set, then :
(1) $A \cup A=A$
(2) $\Lambda \cup \Lambda=\phi$
(3) $A \cup A=\{A, \phi\}$
(4) $A \cup A=\{0\}$
11. In a class of 60 boys, there are 45 boys who play cards and 30 boys who play carrom. How many boys play cards only?
(1) 15
(2) 30
(3) 20
(4) 10
12. Which of the following functions is neither even nor odd ?
(1) $x^{2}+7$
(2) $x^{7}+2 x^{5}$
(3) $|x|+4$
(4) $x+2$
13. If $\mathrm{A}=\{1,3,5,7\}$ and $\mathrm{B}=\{2,5\}$, then the number of relations from A to B is :
(1) 64
(2) 128
(3) 256
(4) 512
14. If $\frac{\cos x}{a}=\frac{\cos (x+\theta)}{b}=\frac{\cos (x+2 \theta)}{c}=\frac{\cos (x+3 \theta)}{d}$, then $\frac{a+c}{b+d}$ is equal to :
(1) $\frac{a}{d}$
(2) $\frac{b}{c}$
(3) $\frac{c}{d}$
(4) $\frac{d}{a}$
15. If in a triangle $A B C, \tan A+\tan B+\tan C>0$, then the triangle is :
(1) Always acute angled triangle
(2) Always obtuse angled triangle
(3) Always equilateral triangle
(4) Nothing can be said about the type of triangle
16. The number of solutions of $\sum_{r=1}^{5} \cos r x=5$ in the interval $[0,2 \pi \mid$ is :
(1) 10
(2) 5
(3) 1
(4) 0
17. If $1+\sin \theta+\sin ^{2} \theta+\ldots \ldots \ldots \infty=4+2 \sqrt{3}, 0<\theta<\pi, \theta \neq \frac{\pi}{2}$, then :
(1) $\theta=\frac{\pi}{3}$
(2) $\theta=\frac{\pi}{6}$
(3) $\frac{\pi}{3}$ or $\frac{\pi}{6}$
(4) $\theta=\frac{\pi}{3}$ or $\frac{2 \pi}{3}$
18. If the multiplicative inverse of a complex number is $\frac{(\sqrt{3}+4 i)}{19}$, then the complex number itself is :
(1) $4-i \sqrt{3}$
(2) $\sqrt{3}+4 i$
(3) $4+i \sqrt{3}$
(4) $\sqrt{3}-4 i$
19. If $1, \omega \omega^{2}$ are the three cube roots of unity, then the roots of the equation $(x-1)^{3}=8$ are :
(1) $3,1+2 \omega, 1+2 \omega^{2}$
(2) $-1,-1,-2 \omega$
(3) $3,2 \omega, 2 \omega^{2}$
(4) None of these
20. If one root of the equation $\dot{x}^{2}-\lambda x+12=0$ is even prime, and $x^{2}+\lambda x+\mu=0$ has equal roots, then μ is :
(1) 8
(2) 16
(3) 24
(4) 32
21. If α, β are roots of the equation $8 x^{2}-3 x+27=0$, then the value of $\left[\left(\frac{\alpha^{2}}{\beta}\right)^{1 / 3}+\left(\frac{\beta^{2}}{\alpha}\right)^{1 / 3}\right]$ is :
(1) $\frac{1}{6}$
(2) $\frac{1}{5}$
(3) $\frac{1}{4}$
(4) $\frac{1}{3}$
22. The number of arrangements of the letters of the word BANANA in which the two N's do not appear adjacently is :
(1) 100
(2) 80
(3) 60
(4) 40
23. The maximum number of points of intersection of 8 straight lines, is :
(1) 28
(2) 56
(3) 8
(4) 16
24. Total number of words formed by using 2 vowels and 3 consonants taken from 4 vowels and 5 consonants is equal to :
(1) 60
(2) 120
(3) 720
(4) None of these
25. If the co-efficient of x^{3} in the expansion of $(1+a x)^{4}$ is 32 , then a equals :
(1) 4
(2) 3
(3) 2
(4) 6
26. If the sum of the binomial coefficients in the expansion of $\left(x+\frac{1}{x}\right)^{n}$ is 64 , then the term independent of x is equal to :
(1) 40
(2) 20
(3) 60
(4) 30
27. A series whose nth term is $\frac{n}{x}+y$, the sum of r terms will be :
(1) $\frac{r(r+1)}{2 x}+r y$
(2) $\frac{r(r-1)}{2 x}$
(3) $\frac{r}{2 x}+r y$
(4) $\frac{r(r-1)}{2 x}+r y$
28. If a, b, c are in G.P., then $\frac{b-a}{b-c}+\frac{b+a}{b+c}$ is equal to :
(1) $b^{2}-c^{2}$
(2) $a b$
(3) $a c$
(4) zero
29. If a, b, c are three unequal numbers such that a, b, c are in A.P. and $b-a, c-b, a$ are in G.P., then $a: b: c$ is equal to :
(1) $1: 2: 3$
(2) $1: 2: 4$
(3) $3: 2: 1$
(4) $2: 3: 5$
30. If $\sum n, \frac{\sqrt{10}}{3} \sum n^{2}, \sum n^{3}$ are in G.P., then the value of n is :
(1) 3
(2) 1
(3) 0
(4) 4
31. The equation of straight line passing through the point $(1,2)$ and perpendicular to the line $x+y+1=0$ is :
(1) $x-y=5$
(2) $x+y=5$
(3) $x+y=1$
(4) $x-y=1$
32. The straight lines $x+y=0,3 x+y-4=0$, and $x+3 y-4=0$ form a triangle which is :
(1) Right angled
(2) Equilateral
(3) Isosceles
(4) None of these
33. The locus of the mid-point of the distance between the axes of the variable line $x \cos \alpha+y \sin \alpha=p$, where p is constant, is :
(1) $\frac{1}{x^{2}}+\frac{1}{y^{2}}=\frac{4}{p^{2}}$
(2) $x^{2}+y^{2}=\frac{4}{p^{2}}$
(3) $\frac{1}{x^{2}}-\frac{1}{y^{2}}=\frac{4}{p^{2}}$
(4) $x^{2}-y^{2}=\frac{4}{p^{2}}$
34. The points $(-a,-b),(0,0),(a, b)$ and $\left(a^{2}, a b\right)$ are :
(1) Vertices of a rectangle
(2) Vertices of a square
(3) Vertices of a parallelogram
(4) Collinear
35. Radius of the largest circle which passes through the focus of the parabola $y^{2}=4 x$ and contained in it, is :
(1) 4
(2) 8
(3) 2
(4) 5
36. The length of the latus rectum of an ellipse is one third of the major axis, its eccentricity would be :
(1) $\frac{1}{\sqrt{3}}$
(2) $\sqrt{\frac{2}{3}}$
(3) $\frac{1}{\sqrt{2}}$
(4) $\frac{2}{3}$
37. If $(a-2) x^{2}+a y^{2}=4$ represents rectangular hyperbola, then a equals :
(1) 0
(2) 2
(3) 1
(4) 3
38. The line joining the points $(1,1,2)$ and $(3,-2,1)$ meets the plane $3 x+2 y+z-6$ at the point :
(1) $(1,1,2)$
(2) $(2,3,-1)$
(3) $(3,2,1)$
(4) $(3,-2,1)$
39. The length of the perpendicular from $(1,0,2)$ on the line $\frac{x+1}{3}=\frac{y-2}{-2}=\frac{z+1}{-1}$ is :
(1) $2 \sqrt{3}$
(2) $3 \sqrt{2}$
(3) $\frac{6 \sqrt{3}}{5}$
(4) $\frac{3 \sqrt{6}}{2}$
40. A plane meets the coordinate axes in A, B, C such that the centroid of the triangle $A B C$ is the point (a, a, a). If the equation of the plane is $x+y+z=p$, then p is :
(1) a
(2) $\frac{a}{3}$
(3) $3 a$
(4) $\frac{3}{a}$
41. $\lim _{x \rightarrow 0} \frac{\sin \left(\pi \cos ^{2} x\right)}{x^{2}}$ is :
(1) $-\pi$
(2) π
(3) $\frac{\pi}{2}$
(4) 1
42. Let $f(x)=3 x^{10}-7 x^{8}+5 x^{6}-21 x^{3}+3 x^{2}-7$. Then $\lim _{h \rightarrow 0} \frac{f(1-h)-f(1)}{h^{3}+3 h}$ is equal to :
(1) $\frac{53}{3}$
(2) $\frac{25}{3}$
(3) $\frac{50}{3}$
(4) $\frac{22}{3}$
43. If $y=\sqrt{x+\sqrt{x+\sqrt{x+\ldots \ldots . . . \infty}}}$, then $\frac{d y}{d x}$ is equal to :
(1) $2 \sqrt{x}$
(2) $\frac{1}{2 y-1}$
(3) \sqrt{x}
(4) None of these
44. If $\sin (x+y)=\log _{e}(x+y)$, then $\frac{d y}{d x}$ is equal to :
(1) 2
(2) 1
(3) -1
(4) -2
45. Two small square on a chess board are chosen at random. Probability that they have a common side is :
(1) $\frac{1}{3}$
(2) $\frac{1}{9}$
(3) $\frac{5}{18}$
(4) $\frac{1}{18}$
46. For n independent events $A_{i}, P\left(A_{i}\right)=\frac{1}{(1+i)}, i=1,2,3, \ldots \ldots \ldots, n$. The probability that at least one of the events occurs is :
(1) $\frac{1}{n}$
(2) $\frac{1}{(n+1)}$
(3) $\frac{n}{(n+1)}$
(4) None of these
47. Two dice are thrown, the probability that the sum of the points on two dice will be 7 is :
(1) $\frac{5}{36}$
(2) $\frac{6}{36}$
(3) $\frac{7}{36}$
(4) $\frac{8}{36}$
48. A single letter is selected at random from the word "PROBABILITY". The probability that it is a vowel, is :
(1) $\frac{3}{11}$
(2) $\frac{4}{11}$
(3) $\frac{2}{11}$
(4) zero
49. If $4 \sin ^{-1} x+\cos ^{-1} x=\pi$, then x is equal to :
(1) 0
(2) $\frac{1}{2}$
(3) $\frac{\sqrt{3}}{2}$
(4) $\frac{1}{\sqrt{2}}$
50. $\tan ^{-1}\left(\tan \frac{3 \pi}{4}\right)$ is equal to :
(1) $-\frac{\pi}{4}$
(2) $\frac{\pi}{4}$
(3) $\frac{3 \pi}{4}$
(4) $-\frac{3 \pi}{4}$
51. The principal value of $\sin ^{-1}\left(-\frac{\sqrt{3}}{2}\right)$ is equal to :
(1) $-\frac{2 \pi}{3}$
(2) $\frac{4 \pi}{3}$
(3) $-\frac{\pi}{3}$
(4) $\frac{5 \pi}{3}$
52. If $A=\left[\begin{array}{cc}1 & 0 \\ -1 & 7\end{array}\right]$ and $A^{2}=8 A+K I_{2}$, then K is equal to :
(1) -1
(2) 1
(3) 7
(4) -7
53. If $A=\left[\begin{array}{ccc}2 & 3 & 4 \\ 5 & -3 & 8 \\ 9 & 2 & 16\end{array}\right]$, then trace of A is :
(1) 15
(2) 17
(3) 8
(4) 25
54. If A is a square matrix of order $n \times n$, then $\operatorname{adj}(\operatorname{adj} A)$ is equal to :
(1) $|A|^{n} A$
(2) $|A|^{n-2} A$
(3) $|A|^{n-1} A$
(4) $|A|^{n-3} A$
55. If α, β are non-real numbers satisfying $x^{3}-1=0$, then the value of $\left|\begin{array}{ccc}\lambda+1 & \alpha & \beta \\ \alpha & \lambda+\beta & 1 \\ \beta & 1 & \lambda+\alpha\end{array}\right|$ is equal to :
(1) λ^{3}
(2) $\lambda^{3}+1$.
(3) $\lambda^{3}-1$
(4) 0
56. The value of x for which the matrix $A=\left[\begin{array}{cc}6 & x-2 \\ 3 & x\end{array}\right]$ has no inverse is :
(1) 0
(2) 2
(3) -2
(4) 3
57. If $A=\left(\begin{array}{cc}1 & x+3 \\ 2 x+1 & x-1\end{array}\right)$ is symmetric, then x is equal to :
(1) 5
(2) 7
(3) 3
(4) 2
58. If $2^{x}+2^{y}=2^{x+y}$, then the value of $\frac{d y}{d x}$ at $x=y=1$ is :
(1) 0
(2) -1
(3) 1
(4) 2
59. If $y^{2}=a x^{2}+b x+c$, then $y^{3} \frac{d^{2} y}{d x^{2}}$ is :
(1) a constant
(2) a function of x only
(3) a function of y only
(4) a function of x and y
60. Let f be a function satisfying $f(x+y)=f(x)+f(y)$ and $f(x)=x^{2} g(x)$ for all x and y, where $g(x)$ is a continuous function, then $f^{\prime}(x)$ is equal to :
(1) $g^{\prime}(x)$
(2) $g(0)$
(3) $g(0)+g^{\prime}(x)$
(4) 0
61. Which of the following is not continuous for all x ?
(1) $x^{2}-\left|x-x^{3}\right|$
(2) $\frac{\cos x}{|\cos x|}$
(3) $|x-1|+|x-2|$
(4) $\sin |x|+|\sin x|$
62. The line $\frac{x}{a}+\frac{y}{b}=1$ touches the curve $y=b e^{-x / a}$ at the point:
(1) $\left(a, \frac{b}{a}\right)$
(2) $\left(-a, \frac{b}{a}\right)$
(3) $\left(a,-\frac{b}{a}\right)$
(4) None of these
63. If $a<0$, the function $f(x)=e^{a x}+e^{-a x}$ is a monotonically decreasing function for values of x given by :
(1) $x<1$
(2) $x>1$
(3) $x<0$
(4) $x>0$

PG(Hons)-EE-June, 2023/(Mathematics (Hons.)Five Year)(SET-X)/(A)
56. Let $f(x)$ be differential function for all x. If $f(1)=-2$ and $f^{\prime}(x) \geq 2$ for all x in $[1,6]$, then minimum value of $f(6)$ is equal to :
(1) 8
(2) 6
(3) 4
(4) 2
57. $\int \frac{10 x^{9}+10^{x} \log _{e} 10}{10^{x}+x^{10}} d x$ is equal to :
(1) $\log \left(10^{x}+x^{10}\right)+c$
(2) $\frac{1}{10^{x}+x^{10}}+c$
(3) $\log \left(x^{9}+10^{x}+x^{10}\right)+c$
(4) None of these
58. $\int \sec ^{3} x d x$ is equal to :
(1) $\frac{1}{3}[\sec x \cdot \tan x+\log (\sec x+\tan x)]$
(2) $\frac{1}{2}[\sec x \cdot \tan x+\log (\sec x+\tan x)]$
(3) $\frac{1}{4}[\sec x \cdot \tan x+\log (\sec x+\tan x)]$
(4) $\tan x \cdot \sec ^{2} x$
59. $\int \frac{x-1}{(x-3)(x-2)} d x$ is equal to :
(1) $\log (x-3)^{2}+\log (x-2)+c$
(2) $\log (x-3)+\log (x-2)+c$
(3) $\log (x-3)^{2}-\log (x-2)+c$
(4) $\log (x-3)-\log (x-2)+c$
60. $\int \frac{d x}{x^{2}+x+1}$ is equal to :
(1) $\frac{\sqrt{3}}{2} \tan ^{-1}\left(\frac{2 x+1}{\sqrt{3}}\right)+c$
(2) $\tan ^{-1}\left(\frac{2 x+1}{\sqrt{3}}\right)+c$
(3) $\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{2 x+1}{\sqrt{3}}\right)+c$
(4) $\frac{2}{\sqrt{3}} \tan ^{-1}\left(\frac{2 x+1}{\sqrt{3}}\right)+c$
61. If $f(a-x)=f(x)$, then $\int_{0}^{a} x f(x) d x$ is equal to :
(1) $\frac{a_{2}^{a}}{2} \int_{0} f(x) d x$
(2) $a \int_{0}^{a} f(x) d x$
(3) $\frac{a^{2}}{2} \int_{0}^{a} f(x) d x$
(4) $\frac{2}{a} \int_{0}^{a} f(x) d x$
62. $\int_{-1}^{1} \sin ^{3} x \cdot \cos ^{2} x d x$ is equal to :
(1) $\frac{1}{2}$
(2) 1
(3) 2
(4) 0
63. The area of the region bounded by the curve $x^{2}=4 y$, line $x=2$ and x-axis is :
(1) 1
(2) $\frac{2}{3}$
(3) $\frac{4}{3}$
(4) $\frac{8}{3}$
64. The area enclosed between the curves $y=a x^{2}, x=a y^{2}(a>0)$ is 1 sq. unit. Then the value of a is :
(1) $\frac{1}{2}$
(2) $\frac{1}{3}$
(3) $\frac{1}{\sqrt{3}}$
(4) 1
65. If p and q are order and degree of differential equation $y^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+3 x\left(\frac{d y}{d x}\right)+x^{2} y^{2}=\sin x$, then :
(1) $p>q$
(2) $\frac{p}{q}=\frac{1}{2}$
(3) $p=q$
(4) $p<q$
66. The integrating factor of differential equation $\frac{d y}{d x}+\frac{1}{x} y=3 x$ is :
(1) x
(2) 0
(3) e^{x}
(4) $\frac{1}{x}$
67. The solution of differential equation $(\cos x) \cos y d x+(\sin x) \sin y d y=0$ is :
(1) $\tan x=c$
(2) $\cos x=c \sin y$
(3) $\sec x-\sec y=c$
(4) $\sin x=c \cos y$
68. The elimination of A and B from the equation $y^{2}=A x+B$ gives the differential equation of order :
(1) First
(2) Second
(3) Third
(4) Zero

PG(Hons)-EE-June, 2023/(Mathematics (Hons.)Five Year)(SET-X)/(A) P. T. O.
69. If $\alpha=2 \hat{i}+3 \hat{j}-\hat{k}, \beta=-\hat{i}+2 \hat{j}-4 \hat{k}, \gamma=\hat{i}+\hat{j}+\hat{k}$, then $(\alpha \times \beta) .(\alpha \times \gamma)$ is cqual to :
(1) 64
(2) 74
(3) -74
(4) -64
70. If \vec{a} and \vec{b} are two vectors such that $\vec{a} \cdot \vec{b}=0$ and $\vec{a} \times \vec{b}=\overrightarrow{0}$, then :
(1) either \vec{a} or \vec{b} is a null vector
(2) \vec{a} is parallel to \vec{b}
(3) \vec{a} is perpendicular to \vec{b}
(4) None of these
71. The two vectors $\vec{a}=2 \hat{i}+\hat{j}+3 \hat{k}, \vec{b}=4 \hat{i}-\lambda \hat{j}+6 \hat{k}$ are parallel if λ is equal to :
(1) 2
(2) -3
(3) 3
(4) -2
72. If a straight line in space is equally inclined to the co-ordinate axes, the cosine of its angle of inclination to any one of the axes is :
(1) $\frac{1}{\sqrt{3}}$
(2) $\frac{1}{3}$
(3) $\frac{1}{2}$
(4) $\frac{1}{\sqrt{2}}$
73. If the lines $\frac{x-1}{2}, \frac{y+1}{3}=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-k}{2}=\frac{z}{1}$ intersect, then the value of k is :
(1) $\frac{3}{2}$
(2) $\frac{2}{3}$
(3) $\frac{9}{2}$
(4) $-\frac{3}{2}$
74. Distance of the point $(2,3,4)$ from the plane $3 x-6 y+2 z+11=0$ is :
(1) 2
(2) 1
(3) 0
(4) 3
75. If the straight line $\frac{x-3}{-4}=\frac{y-4}{-7}=\frac{z+3}{13}$ lies in the plane $5 x-y+z=a$, then a is equal to :
(1) 8
(2) 9
(3) 2
(4) -3
76. A fair coin is tossed repeatedly. If tail appears on first four tosses, then the probability of head appearing on fifth toss is :
(1) $\frac{1}{5}$
(2) $\frac{31}{32}$
(3) $\frac{1}{32}$
(4) $\frac{1}{2}$
77. Seven white balls and three black balls are placed in a row. The probability that no two black balls are placed adjacently equals :
(1) $\frac{1}{3}$
(2) $\frac{2}{15}$
(3) $\frac{7}{15}$
(4) $\frac{4}{15}$
78. A man is known to speak truth in 75% cases. If he throws an unbiased die and tells his friends that it is a six, then the probability that it is actually a six, is :
(1) $\frac{1}{6}$
(2) $\frac{1}{8}$
(3) $\frac{3}{8}$
(4) $\frac{3}{4}$
79. Let $f: R \rightarrow R$ be defined by $f(x)=3 x-4$, then $f^{-1}(x)$ is equal to :
(1) $\frac{1}{3}(x+4)$
(2) $\frac{x}{3}-4$
(3) $3 x+4$
(4) Not defined
80. The function $f: R \rightarrow R$ defined by $f(x)=(x-1)(x-2)(x-3)$ is :
(1) one-one but not onto
(2) onto but not one-one
(3) both one-one and onto
(4) neither one-one nor onto
81. A linear function $Z=a x+b y$, where a, b are constants, which has to be maximized or minimized is called a linear :
(1) Subjective function
(2) Collective function
(3) Objective function
(4) None of these
82. Any point in the feasible region that gives the maximum or minimum value of the objective function is called an :
(1) Optical solution
(2) Optimal solution
(3) Practical solution
(4) None of these
83. Ten eggs are drawn successively with replacement from a lot containing 10% defective eggs. Find the probability that there is at least one defective egg :
(1) $1-\frac{9^{10}}{10^{10}}$
(2) $1-\frac{9^{10}-1}{10^{10}}$
(3) $1-\frac{9^{9}}{10^{9}}$
(4) $1-\frac{9^{10}}{10^{9}}$
84. Let X be a random variable whose possible values $x_{1}, x_{2}, x_{3}, \ldots \ldots ., x_{n}$ occur with probabilities $p_{1}, p_{2}, p_{3}, \ldots . . ., p_{n}$. The mean of random variable X is given by :
(1) $E(X)=\sum_{i=1}^{n} \frac{p_{i}}{x_{i}}$
(2) $E(X)=\sum_{i=1}^{n} \frac{x_{i}}{p_{i}}$
(3) $E(X)=\sum_{i=1}^{n}\left(p_{i}+x_{i}\right)$
(4) $E(X)=\sum_{i=1}^{n} p_{i} x_{i}$
85. A region is said to be convex, if the line segment joining any two arbitrary points of the region lies :
(1) Entirely within the region
(2) Entirely outside the region
(3) Anywhere within or outside the region
(4) None of these
86. If $P(n)$ is the statement, $" \frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\ldots \ldots \ldots+\frac{1}{n(n+1)}=\frac{n}{n+1} "$, where $n \in N$, then $P(2)$ is the statement :
(1) $\frac{1}{2}+\frac{1}{6}=\frac{2}{3}$
(2) $\frac{1}{1 \times 2}=\frac{1}{1+1}$
(3) $\frac{1}{1 \times 2}+\frac{1}{3 \times 4}=\frac{7}{12}$
(4) None of these
87. The solution of linear inequation $2 x+10 \geq 0$ is :
(1) $x \in(-5, \infty)$
(2) $x \in(-\infty, \infty)$
(3) $x \in[-5, \infty)$
(4) $x \leq-5$
88. Which of the following is not correct?
(1) $x \geq 4 \Rightarrow x-3 \geq 1$
(2) $x \leq y \Rightarrow-3 x \geq-3 y$
(3) $2 x-6 y \geq 0 \Rightarrow x \geq 3 y$
(4) $4 x \geq 8 \Rightarrow x \leq 2$
89. A company manufactures toys and its cost equation for a week is $C=300+1.5 x$ and its revenue equation is $R=2 x$, where x is the number of toys sold in a week. How many toys must be sold for the company to realize a profit?
(1) Between 500 and 600
(2) More than 600
(3) At most 550
(4) None of these
90. A sentence is a statement if it is :
(1) Always true
(2) Always false
(3) Either true or false but not both
(4) Sometimes true, sometimes false
91. Let p and q stand for, the statements :
'Sohan is intelligent' and 'Sohan is hardworking'. Then the statement 'Sohan is not intelligent and Sohan is hardworking' is denoted by :
(1) $p \wedge q$
(2) $\sim p \wedge \sim q$
(3) $\sim p \wedge q$
(4) None of these
92. The disjunction $p \vee q$ is false only when :
(1) p is false
(2) p and q are both false
(3) p or q are both false
(4) p is false and q may be true
93. The mean of the first n natural numbers is given by :
(1) $\frac{n}{2}$
(2) $\frac{n(n+1)}{2}$
(3) $\frac{n+1}{2 n}$
(4) $\frac{n+1}{2}$
94. Which of the following is not a merit of standard deviation?
(1) It is based on all the items
(2) It is simple to understand
(3) It is unduly affected by the extreme items
(4) It has sampling stability
95. A measure of scatteredness of items about some average is called a measure of:
(1) Dispersion
(2) Conclusion
(3) Logic
(4) None of these

PG(Hons)-EE-June, 2023/(Mathematics (Hons.)Five Year)(SET-X)/(A) P. T. O.
96. The coefficient of Standard Deviation (S.D.) is given by :
(1) $\left(\frac{\text { S.D. }}{100}\right)$
(2) $\left(\frac{\text { S.D. }}{\bar{x}}\right) 100$
(3) $\left(\frac{\text { S.D. }}{\bar{x}}\right)$
(4) $\left(\frac{\bar{x}}{\text { S.D. }}\right)$
97. How many numbers are there between 100 and 1000 such that every digit is either 2 or 9 ?
(1) 8
(2) 6
(3) 4
(4) 48
98. In the expansion of $\left(x+\frac{1}{x}\right)^{6}$, the third term from the end is :
(1) $\frac{1}{x^{2}}$
(2) $\frac{15}{x^{2}}$
(3) $\frac{15}{x^{4}}$
(4) ${ }^{6} C_{4}$
99. If $\left(x^{2}-5 x+7\right)^{2}-(x-2)(x-3)=1$ and let $y=x^{2}-5 x$. Then the values of y are :
(1) $-7,-6$
(2) 3,2
(3) $-7,6$
(4) $\frac{5 \pm i \sqrt{3}}{2}$
100. For the standard ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, which of the following is true ?
(1) $a^{2}=b^{2}\left(1+e^{2}\right)$
(2) $b^{2}=a^{2}\left(e^{2}-1\right)$
(3) $a^{2}=\frac{b^{2}}{2}\left(1-e^{2}\right)$
(4) $b^{2}=a^{2}\left(1-e^{2}\right)$

Sr. No.
\qquad (in words) \qquad Name \qquad Date of Birth \qquad
Father's Name \qquad Mother's Name \qquad
Date of Examination

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

1. All questions are compulsory.

2. The candidates must return the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfairmeans / mis-behaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
4. Question Booklet along with answer key of all the A, B, C \& D code shall be got uploaded on the University Website immediately after the conduct of Entrance Examination. Candidates may raise valid objection/complaint if any, with regard to discrepancy in the question booklet/answer key within 24 hours of uploading the same on the University Website. The complaint be sent by the students to the Controller of Examinations by hand or through email. Thereafter, no complaint in any case, will be considered.
5. The candidate must not do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers must not be ticked in the question booklet.
6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
7. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
8. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.
PG(Hons)-EE-June, 2023/(Mathematics (Hons.) Five Year)(SET-X)/(B)
9. The two vectors $\vec{a}=2 \hat{i}+\hat{j}+3 \hat{k}, \vec{b}=4 \hat{i}-\lambda \hat{j}+6 \hat{k}$ are parallel if λ is equal to:
(1) 2
(2) 3
(3) 3
(4) 2
10. If a straight line in space is equally inclined to the co-ordinate axes. the cosine of its angle of inclination to any one of the axes is :
(1) $\frac{1}{\sqrt{3}}$
(2) $\frac{1}{3}$
(3) $\frac{1}{2}$
(4) $\frac{1}{\sqrt{2}}$
11. If the lines $\frac{x-1}{2}, \frac{y+1}{3}=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-k}{2}=\frac{z}{1}$ intersect. then the value of k is :
(1) $\frac{3}{2}$
(2) $\frac{2}{3}$
(3) $\frac{9}{2}$
(4) $-\frac{3}{2}$
12. Distance of the point $(2,3,4)$ from the plane $3 x-6 y+2 z+11=0$ is :
(1) 2
(2) 1
(3) 0
(4) 3
13. If the straight line $\frac{x-3}{-4}=\frac{y-4}{-7}=\frac{z+3}{13}$ lies in the plane $5 x-y+z=a$. then a is equal to :
(1) 8
(2) 9
(3) 2
(4) 3
14. A fair coin is tossed repeatedly. If tail appears on first four tosses, then the probability of head appearing on fifth toss is :
(1) $\frac{1}{5}$
(2) $\frac{31}{32}$
(3) $\frac{1}{32}$
(4) $\frac{1}{2}$
15. Seven white balls and three black balls are placed in a row. The probability that no two black balls are placed adjacently equals :
(1) $\frac{1}{3}$
(2) $\frac{2}{15}$
(3) $\frac{7}{15}$
(4) $\frac{4}{15}$
16. A man is known to speak truth in 75% cases. If he throws an unbiased die and tells his friends that it is a six, then the probability that it is actually a six. is :
(1) $\frac{1}{6}$
(2) $\frac{1}{8}$
(3) $\frac{3}{8}$
(4) $\frac{3}{4}$
17. Let $f: R \rightarrow R$ be defined by $f(x)=3 x-4$, then $f^{-1}(x)$ is equal 10 :
(1) $\frac{1}{3}(x+4)$
(2) $\frac{x}{3}-4$
(3) $3 x+4$
(4) Not defined
18. The function $f: R \rightarrow R$ defined by $f(x)=(x-1)(x-2)(x-3)$ is :
(1) one-one but not onto
(2) onto but not one-one
(3) both one-one and onto
(4) neither one-one nor onto
19. If $y^{2}=a x^{2}+b x+c$, then $y^{3} \frac{d^{2} y}{d x^{2}}$ is :
(1) a constant
(2) a function of x only
(3) a function of y only
(4) a function of x and y
20. Let f be a function satisfying $f(x+y)=f(x)+f(y)$ and $f(x)=x^{2} g(x)$ for all x and y. where $g(x)$ is a continuous function, then $f^{\prime}(x)$ is equal to :
(1) $g^{\prime}(x)$
(2) $g(0)$
(3) $g(0)+g^{\prime}(x)$
(4) 0
21. Which of the following is not continuous for all x ?
(1) $x^{2}-\left|x-x^{3}\right|$
(2) $\frac{\cos x}{|\cos x|}$
(3) $|x-1|+|x-2|$
(4) $\sin |x|+|\sin x|$
22. The line $\frac{x}{a}+\frac{y}{b}=1$ touches the curve $y=b e^{-x / a}$ at the point:
(1) $\left(a, \frac{b}{a}\right)$
(2) $\left(-a, \frac{b}{a}\right)$
(3) $\left(a,-\frac{b}{a}\right)$
(4) None of these
23. If $a<0$, the function $f(x)=e^{a x}+e^{-a x}$ is a monotonically decreasing function for values of x given by :
(1) $x<1$
(2) $x>1$
(3) $x<0$
(4) $x>0$
24. Let $f(x)$ be differential function for all x. If $f(1)=-2$ and $f^{\prime}(x) \geq 2$ for all x in $\mid 1$. of. then minimum value of $f(6)$ is equal to :
(1) 8
(2) 6
(3) 4
(4) 2
25. $\int \frac{10 x^{9}+10^{x} \log _{e} 10}{10^{x}+x^{10}} d x$ is equal to :
(1) $\log \left(10^{x}+x^{10}\right)+c$
(2) $\frac{1}{10^{x}+x^{10}}+c$
(3) $\log \left(x^{9}+10^{x}+x^{10}\right)+c$
(4) None of these
26. $\int \sec ^{3} x d x$ is equal to :
(1) $\frac{1}{3}[\sec x \cdot \tan x+\log (\sec x+\tan x)]$
(2) $\frac{1}{2}[\sec x \cdot \tan x+\log (\sec x+\tan x)]$
(3) $\frac{1}{4}[\sec x \cdot \tan x+\log (\sec x+\tan x)]$
(4) $\tan x \cdot \sec ^{2} x$
27. $\int \frac{x-1}{(x-3)(x-2)} d x$ is equal to :
(1) $\log (x-3)^{2}+\log (x-2)+c$
(2) $\log (x-3)+\log (x-2)+c$
(3) $\log (x-3)^{2}-\log (x-2)+c$
(4) $\log (x-3)-\log (x-2)+c$
28. $\int \frac{d x}{x^{2}+x+1}$ is equal to :
(1) $\frac{\sqrt{3}}{2} \tan ^{-1}\left(\frac{2 x+1}{\sqrt{3}}\right)+c$
(2) $\tan ^{-1}\left(\frac{2 x+1}{\sqrt{3}}\right)+c$
(3) $\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{2 x+1}{\sqrt{3}}\right)+c$
(4) $\frac{2}{\sqrt{3}} \tan ^{-1}\left(\frac{2 x+1}{\sqrt{3}}\right)+c$
29. The length of the perpendicular from $(1,0,2)$ on the line $\frac{x+1}{3}=\frac{y-2}{-2}-\frac{z+1}{-1}$ is
(1) $2 \sqrt{3}$
(2) $3 \sqrt{2}$
(3) $\frac{6 \sqrt{3}}{5}$
(4) $\frac{3 \sqrt{6}}{2}$
30. A plane meets the coordinate axes in A, B, C such that the centroid of the triangle $A B C$ is the point (a, a, a). If the equation of the plane is $x+y+z \quad p$, then p is :
(1) a
(2) $\frac{a}{3}$
(3) $3 a$
(4) $\frac{3}{a}$
31. $\lim _{x \rightarrow 0} \frac{\sin \left(\pi \cos ^{2} x\right)}{x^{2}}$ is :
(1) $-\pi$
(2) π
(3) $\frac{\pi}{2}$
(4) 1
32. Let $f(x)=3 x^{10}-7 x^{8}+5 x^{6}-21 x^{3}+3 x^{2}-7$. Then $\lim _{h \rightarrow 0} \frac{f(1-h)-f(1)}{h^{3}+3 h}$ is cqual to :
(1) $\frac{53}{3}$
(2) $\frac{25}{3}$
(3) $\frac{50}{3}$
(4) $\frac{22}{3}$
33. If $y=\sqrt{x+\sqrt{x+\sqrt{x+\ldots \ldots \ldots \infty}}}$, then $\frac{d y}{d x}$ is equal to:
(1) $2 \sqrt{x}$
(2) $\frac{1}{2 y-1}$
(3) \sqrt{x}
(4) None of these
34. If $\sin (x+y)=\log _{e}(x+y)$, then $\frac{d y}{d x}$ is equal to :
(1) 2
(2) 1
(3) -1
(4) -2
35. Two small square on a chess board are chosen at random. Probability that they have a common side is :
(1) $\frac{1}{3}$
(2) $\frac{1}{9}$
(3) $\frac{5}{18}$
(4) $\frac{1}{18}$
36. For n independent events $A_{i}, P\left(A_{i}\right)=\frac{1}{(1+i)}, i=1,2,3, \ldots \ldots \ldots, n$. The probability that at least one of the events occurs is :
(1) $\frac{1}{n}$
(2) $\frac{1}{(n+1)}$
(3) $\frac{n}{(n+1)}$
(4) None of these
37. Two dice are thrown, the probability that the sum of the points on two dice will be 7 is :
(1) $\frac{5}{36}$
(2) $\frac{6}{36}$
(3) $\frac{7}{36}$
(4) $\frac{8}{36}$
38. A single letter is selected at random from the word "PROBABILITY". The probability that it is a vowel, is :
(1) $\frac{3}{11}$
(2) $\frac{4}{11}$
(3) $\frac{2}{11}$
(4) zero
39. If $1, \omega \omega^{2}$ are the three cube roots of unity, then the roots of the equation $(x-1)^{3}=8$ are :
(1) $3,1+2 \omega, 1+2 \omega^{2}$
(2) $-1,-1,-2 \omega$
(3) $3,2 \omega, 2 \omega^{2}$
(4) None of these
40. If one root of the equation $x^{2}-\lambda x+12=0$ is even prime, and $x^{2}+\lambda x+\mu=0$ has equal roots, then μ is :
(1) 8
(2) 16
(3) 24
(4) 32
41. If α, β are roots of the equation $8 x^{2}-3 x+27=0$, then the value of $\left[\left(\frac{\alpha^{2}}{\beta}\right)^{1 / 3}+\left(\frac{\beta^{2}}{\alpha}\right)^{1 / 3}\right]$ is :
(1) $\frac{1}{6}$
(2) $\frac{1}{5}$
(3) $\frac{1}{4}$
(4) $\frac{1}{3}$
42. The number of arrangements of the letters of the word $B \wedge N \wedge N \wedge$ in which the two N^{\prime} 's do not appear adjacently is :
(1) 100
(2) 80
(3) 60
(4) 40
43. The maximum number of points of intersection of 8 straight lines, is :
(1) 28
(2) 56
(3) 8
(4) 16
44. Total number of words formed by using 2 vowels and 3 consonants taken from 4 vowels and 5 consonants is equal to :
(1) 60
(2) 120
(3) 720
(4) None of these
45. If the co-efficient of x^{3} in the expansion of $(1+a x)^{4}$ is 32 , then a equals :
(1) 4
(2) 3
(3) 2
(4) 6
46. If the sum of the binomial coefficients in the expansion of $\left(x+\frac{1}{x}\right)^{n}$ is 64 . then the term independent of x is cqual to :
(1) 40
(2) 20
(3) 60
(4) 30
47. A series whose nth term is $\frac{n}{x}+y$, the sum of r terms will be :
(1) $\frac{r(r+1)}{2 x}+r y$
(2) $\frac{r(r-1)}{2 x}$
(3) $\frac{r}{2 x}+r y$
(4) $\frac{r(r-1)}{2 x}+r y$
48. If a, b, c are in G.P., then $\frac{b-a}{b-c}+\frac{b+a}{b+c}$ is equal to :
(1) $b^{2}-c^{2}$
(2) $a b$
(3) $a c$
(4) zero
49. Let p and q stand for, the statements :
'Sohan is intelligent' and 'Sohan is hardworking'. Then the statement 'Sohan is not intelligent and Sohan is hardworking' is denoted by :
(1) $p \wedge q$
(2) $\sim p \wedge \sim q$
(3) $\sim p \wedge q$
(4) None of these
50. The disjunction $p \vee q$ is false only when :
(1) p is false
(2) p and q are both false
(3) p or q are both false
(4) p is false and q may be true
51. The mean of the first n natural numbers is given by :
(1) $\frac{n}{2}$
(2) $\frac{n(n+1)}{2}$
(3) $\frac{n+1}{2 n}$
(4) $\frac{n+1}{2}$
52. Which of the following is not a merit of standard deviation ?
(1) It is based on all the items
(2) It is simple to understand
(3) It is unduly affected by the extreme items
(4) It has sampling stability
53. A measure of scatteredness of items about some average is called a measure of:
(1) Dispersion
(2) Conclusion
(3) Logic
(4) None of these
54. The coefficient of Standard Deviation (S.D.) is given by :
(1) $\left(\frac{S . D_{.}}{100}\right)$
(2) $\left(\frac{\text { S.D. }}{\bar{x}}\right) 100$
(3) $\left(\frac{\text { S.D. }}{\bar{x}}\right)$
(4) $\left(\frac{\bar{x}}{\text { S.D. }}\right)$
55. How many numbers are there between 100 and 1000 such that every digit is either 2 or 9?
(1) 8
(2) 6
(3) 4
(4) 48
56. In the expansion of $\left(x+\frac{1}{x}\right)^{6}$, the third term from the end is :
(1) $\frac{1}{x^{2}}$
(2) $\frac{15}{x^{2}}$
(3) $\frac{15}{x^{4}}$
(4) ${ }^{6} C_{4}$
57. If $\left(x^{2}-5 x+7\right)^{2}-(x-2)(x-3)=1$ and let $y=x^{2}-5 x$. Then the values of y are :
(1) $-7,-6$
(2) 3,2
(3) $-7,6$
(4) $\frac{5 \pm i \sqrt{3}}{2}$
58. For the vandard elifipse $\frac{x^{2}}{a^{2}}-\frac{p^{2}}{b^{2}}=1$, which of the following is true
(1) $a^{2}=b^{2}\left(1-e^{2}\right)$
(2) $b^{2}=a^{2}\left(e^{2}-1\right)$
(3) $a^{2}=\frac{b^{2}}{2}\left(1-a^{2}\right)$
(4) $b^{2}=a^{2}\left(1-e^{2}\right)$
59. If $f(a-x)=f(x)$ then $f(x)$ d x is equal to
(1) $\frac{a}{2} \int f(x) d x$
(2) $a \int_{0}^{a} f(x) d x$
(3) $\frac{a^{2}}{2} \int f(x) d x$
(4) $\frac{2}{a} \int_{0}^{a} f(x) d x$
60. $\int_{-1} \sin ^{3} x \cdot \cos ^{2} x d x$ is equal to:
(1) $\frac{1}{2}$
(2) 1
(3) 2
(4) 0
61. The area of the region bounded by the curve $x^{2}=4 y$, line $x=2$ and x-axis is :
(1) 1
(2) $\frac{2}{3}$
(3) $\frac{4}{3}$
(4) $\frac{8}{3}$
62. The area enclosed between the curves $y=a x^{2}, x=a y^{2}(a>0)$ is 1 sq. unit. Then the value of a is :
(1) $\frac{1}{2}$
(2) $\frac{1}{3}$
(3) $\frac{1}{\sqrt{3}}$
(4) 1
63. If p and q are order and degree of differential equation $y^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+3 x\left(\frac{d y}{d x}\right)+x^{2} y^{2}=\sin x$. then :
(1) $p>q$
(2) $\frac{p}{q}=\frac{1}{2}$
(3) $p=q$
(4) $p<q$
64. The integrating factor of differential equation $\frac{d y}{d x}+\frac{1}{x} y=3 x$ is :
(1) x
(2) 0
(3) e^{x}
(4) $\frac{1}{x}$
65. The solution of differential equation $(\cos x) \cos y d x+(\sin x) \sin y d y-0$ is :
(1) $\tan x=c$
(2) $\cos x=c \sin y$
(3) $\sec x-\sec y=c$
(4) $\sin x=c \cos y$
66. The elimination of A and B from the equation $y^{2}=A x+B$ gives the differential equation of order :
(1) First
(2) Second
(3) Third
(4) Zero
67. If $\alpha=2 \hat{i}+3 \hat{j}-\hat{k}, \beta=-\hat{i}+2 \hat{j}-4 \hat{k}, \gamma=\hat{i}+\hat{j}+\hat{k}$, then $(\alpha \times \beta) .(\alpha \times \gamma)$ is equal to :
(1) 64
(2) 74
(3) -74
(4) -64
68. If \vec{a} and \vec{b} are two vectors such that $\vec{a} \cdot \vec{b}=0$ and $\vec{a} \times \vec{b}=\overrightarrow{0}$, then :
(1) either \vec{a} or \vec{b} is a null vector
(2) \vec{a} is parallel to \vec{b}
(3) \vec{a} is perpendicular to \vec{b}
(4) None of these
69. A linear function $Z=a x+b y$, where a, b are constants, which has to be maximized or minimized is called a linear :
(1) Subjective function
(2) Collective function
(3) Objective function
(4) None of these
70. Any point in the feasible region that gives the maximum or minimum value of the objective function is called an :
(1) Optical solution
(2) Optimal solution
(3) Practical solution
(4) None of these
71. Ten eggs are drawn successively with replacement from a lot containing 10% defective eggs. Find the probability that there is at least one defective egg :
(1) $1-\frac{9^{10}}{10^{10}}$
(2) $1-\frac{9^{10}-1}{10^{10}}$
(3) $1-\frac{9^{9}}{10^{9}}$
(4) $1-\frac{9^{10}}{10^{9}}$
72. Let X be a random variable whose possible values $x_{1}, x_{2}, x_{3}, \ldots \ldots, x_{n}$ occur with probabilities $p_{1}, p_{2}, p_{3}, \ldots \ldots, p_{n}$. The mean of random variable X is given by
(1) $E(X)=\sum_{i=1}^{n} \frac{p_{i}}{x_{i}}$
(2) $E(X)=\sum_{i=1}^{n} \frac{x_{i}}{p_{i}}$
(3) $E(X)=\sum_{i=1}^{n}\left(p_{i}+x_{i}\right)$
(4) $E(X)=\sum_{i=1}^{n} p_{i} x_{i}$
73. A region is said to be convex, if the line segment joining any two arbitrary points of the region lies:
(1) Entirely within the region
(2) Entirely outside the region
(3) Anywhere within or outside the region
(4) None of these
74. If $P(n)$ is the statement. " $\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\ldots \ldots \ldots .+\frac{1}{n(n+1)}=\frac{n}{n+1}$ ". where $n \in N$. then $P(2)$ is the statement :
(1) $\frac{1}{2}+\frac{1}{6}=\frac{2}{3}$
(2) $\frac{1}{1 \times 2}=\frac{1}{1+1}$
(3) $\frac{1}{1 \times 2}+\frac{1}{3 \times 4}=\frac{7}{12}$
(4) None of these
75. The solution of linear inequation $2 x-10 \geq 0$ is :
(1) $x \in(-5, \infty)$
(2) $x \in(-\infty, \infty)$
(3) $x \in[-5, \infty)$
(4) $x \leq-5$

PG(Hons)-EE-June, 2023/(Mathematics (Hons.)Five Year)(SET-X)/(B)

68. Which of the following is not correct ?
(1) $x \geq 4 \Rightarrow x-3 \geq 1$
(2) $x \leq y \Rightarrow-3 x \geq-3 y$
(3) $2 x-6 y \geq 0 \Rightarrow x \geq 3 y$
(4) $4 x \geq 8 \Rightarrow x \leq 2$
69. A company manufactures toys and its cost equation for a week is $C=300-1.5 x$ and its revenue equation is $R=2 x$, where x is the number of toys sold in a week. How many toys must be sold for the company to realize a profit?
(1) Between 500 and 600
(2) More than 600
(3) At most 550
(4) None of these
70. A sentence is a statement if it is:
(1) Always true
(2) Always false
(3) Either true or false but not both
(4) Sometimes true sometimes false
71. If $4 \sin ^{-1} x+\cos ^{-1} x=\pi$, then x is equal to :
(1) 0
(2) $\frac{1}{2}$
(3) $\frac{\sqrt{3}}{2}$
(4) $\frac{1}{\sqrt{2}}$
72. $\tan ^{-1}\left(\tan \frac{3 \pi}{4}\right)$ is equal to :
(1) $-\frac{\pi}{4}$
(2) $\frac{\pi}{4}$
(3) $\frac{3 \pi}{4}$
(4) $-\frac{3 \pi}{4}$
73. The principal value of $\sin ^{-1}\left(-\frac{\sqrt{3}}{2}\right)$ is equal to :
(1) $-\frac{2 \pi}{3}$
(2) $\frac{4 \pi}{3}$
(3) $-\frac{\pi}{3}$
(4) $\frac{5 \pi}{3}$
74. If $A=\left[\begin{array}{cc}1 & 0 \\ -1 & 7\end{array}\right]$ and $A^{2}=8 A+K I_{2}$, then K is equal to :
(1) -1
(2) 1
(3) 7
(4) -7
75. If $A=\left[\begin{array}{ccc}2 & 3 & 4 \\ 5 & -3 & 8 \\ 9 & 2 & 16\end{array}\right]$. then trace of A is :
(1) 15
(2) 17
(3) 8
(4) 25
76. If A is a square matrix of order $n \times n$, then $\operatorname{adj}(\operatorname{adj} A)$ is equal to :
(1) $|A|^{n} A$
(2) $|A|^{n-2} A$
(3) $|A|^{n-1} A$
(4) $|A|^{n-3} A$
77. If α, β are non-real numbers satisfying $x^{3}-1=0$, then the value of $\left|\begin{array}{ccc}\lambda+1 & \alpha & \beta \\ \alpha & \lambda+\beta & 1 \\ \beta & 1 & \lambda+\alpha\end{array}\right|$ is equal to :
(1) λ^{3}
(2) $\lambda^{3}+1$
(3) $\lambda^{3}-1$
(4) 0
78. The value of x for which the matrix $A=\left[\begin{array}{cc}6 & x-2 \\ 3 & x\end{array}\right]$ has no inverse is :
(1) 0
(2) 2
(3) -2
(4) 3
79. If $A=\left(\begin{array}{cc}1 & x-3 \\ 2 x-1 & x-1\end{array}\right)$ is symmetric, then x is equal to :
(1) 5
(2) 7
(3) 3
(4) 2

(1) 0
(2) -1
(3) 1
(4) 2
80. If a, b, c are three unequal numbers such that a, b, c are in A.P. and $b-a, c-b, a$ arc in G.P.. then $a: b: c$ is equal to :
(1) $1: 2: 3$
(2) $1: 2: 4$
(3) $3: 2: 1$
(4) $2: 3: 5$
81. If $\sum n . \frac{\sqrt{10}}{3} \sum n^{2} . \sum n^{3}$ are in G.P.. then the value of n is :
(1) 3
(2) 1
(3) 0
(4) 4
82. The equation of straight line passing through the point (1,2) and perpendicular to the line $x-y-1=0$ is :
(1) $x-y=5$
(2) $x-y=5$
(3) $x-y=1$
(4) $x-y=1$
83. The straight lines $x+y=0,3 x+y-4=0$, and $x+3 y-4=0$ form a triangle which is :
(1) Right angled
(2) Equilateral
(3) Isosceles
(4) None of these
84. The locus of the mid-point of the distance between the axes of the variable line $x \cos \alpha+y \sin \alpha=p$, where p is constant, is :
(1) $\frac{1}{x^{2}}+\frac{1}{y^{2}}=\frac{4}{p^{2}}$
(2) $x^{2}+y^{2}=\frac{4}{p^{2}}$
(3) $\frac{1}{x^{2}}-\frac{1}{y^{2}}=\frac{4}{p^{2}}$
(4) $x^{2}-y^{2}=\frac{4}{p^{2}}$
85. The points $(-a,-b),(0,0),(a, b)$ and $\left(a^{2}, a b\right)$ are :
(1) Vertices of a rectangle
(2) Vertices of a square
(3) Vertices of a parallelogram
(4) Collinear
86. Radius of the largest circle which passes through the focus of the parabola $y^{2}=4 x$ and
contained in it, is:
(1) 4
(2) 8
(3) 2
(4) 5
87. The length of the latus rectum of an ellipse is one third of the major axis, its
eccentricity would be :
(1) $\frac{1}{\sqrt{3}}$
(2) $\sqrt{\frac{2}{3}}$
(3) $\frac{1}{\sqrt{2}}$
(4) $\frac{2}{3}$
88. If $(a-2) x^{2}+a y^{2}=4$ represents rectangular hyperbola, then a equals :
(1) 0
(2) 2
(3) 1
(4) 3
89. The line joining the points $(1,1,2)$ and $(3,-2,1)$ meets the plane $3 x+2 y+z-6$ at the point :
(1) $(1,1,2)$
(2) $(2,3,-1)$
(3) $(3,2,1)$
(4) $(3,-2,1)$
90. If $A=\{x, y\}$, then which of the following statement is true ?
(1) $\phi \in A$
(2) $y \subseteq A$
(3) $\{y\} \in A$
(4) $\{x\} \subseteq A$
91. If A is any set, then :
(1) $A \cup A=A$
(2) $A \cup A=\phi$
(3) $A \cup A=\{A, \phi\}$
(4) $A \cup A=\{0\}$
92. In a class of 60 boys, there are 45 boys who play cards and 30 boys who play carrom. How many boys play cards only?
(1) 15
(2) 30
(3) 20
(4) 10
93. Which of the following functions is neither even nor odd ?
(1) $x^{2}+7$
(2) $x^{7}+2 x^{5}$
(3) $|x|+4$
(4) $x+2$
94. If $\mathrm{A}=\{1,3,5,7\}$ and $\mathrm{B}=\{2,5\}$, then the number of relations from A to B is :
(1) 64
(2) 128
(3) 256
(4) 512
95. If $\frac{\cos x}{a}=\frac{\cos (x+9)}{b}=\frac{\cos (x+20)}{c}=\frac{\cos (x+30)}{d}$, then $\frac{a+c}{b+d}$ is cqual to
(1) $\frac{a}{d}$
(2) $\frac{b}{c}$
(3) $\frac{c}{d}$
(4) $\frac{d}{a}$
96. If in a triangle $A B C, \tan A+\tan B+\tan C>0$, then the triangle is :
(1) Always acute angled triangle
(2) Always obtuse angled triangle
(3) Always equilatera! triangle
(4) Nothing can be said about the type of triangle
97. The number of solutions of $\sum_{r=1}^{5} \cos r x=5$ in the interval $(0,2 \pi)$ is :
(1) 10
(2) 5
(3) 1
(4) 0
98. If $1+\sin \theta-\sin ^{2} \theta+\ldots \ldots . x=4+2 \sqrt{3}, 0-\theta-\pi \theta \neq \frac{\pi}{2}$. then
(1) $\theta=\frac{\pi}{3}$
(2) $\theta=\frac{\pi}{6}$
(3) $\frac{\pi}{3}$ or $\frac{\pi}{6}$
(4) $\theta=\frac{\pi}{3}$ or $\frac{2 \pi}{3}$
99. If the multiplicative inverse of a complex number is $\frac{(\sqrt{3}-4 i)}{19}$. then the complex number itself is:
(1) $4-i \sqrt{3}$
(2) $\sqrt{3}+4 i$
(3) $4+i \sqrt{3}$
(4) $\sqrt{3}-4 i$

Mathematics (Hons.) Five Year Integrated

Sr. No. \qquad
Time : 1 $11 / 4$ Hours
Roll No. (in figures) \qquad Max. Marks : 100

Total Questions 100 (in words) \qquad Name \qquad Date of Birth \qquad
Father's Name \qquad Mother's Name \qquad
Date of Examination \qquad
(Signature of the Candidate)
(Signature of the Invigilator)

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

1. All questions are compulsory.

2. The candidates must return the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfairmeans / mis-behaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
4. Question Booklet along with answer key of all the $A, B, C \& D$ code shall be got uploaded on the University Website immediately after the conduct of Entrance Examination. Candidates may raise valid objection/complaint if any, with regard to discrepancy in the question booklet/answer key within 24 hours of uploading the same on the University Website. The complaint be sent by the students to the Controller of Examinations by hand or through email. Thereafter, no complaint in any case, will be considered.
5. The candidate must not do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers must not be ticked in the question booklet.
6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
7. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
8. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.
PG(Hons)-EE-June, 2023/(Mathematics (Hons.) Five Year)(SET-X)/(C)
9. If $4 \sin ^{-1} x+\cos ^{-1} x=\pi$, then x is equal to :
(1) 0
(2) $\frac{1}{2}$
(3) $\frac{\sqrt{3}}{2}$
(4) $\frac{1}{\sqrt{2}}$
10. $\tan ^{-1}\left(\tan \frac{3 \pi}{4}\right)$ is equal to :
(1) $-\frac{\pi}{4}$
(2) $\frac{\pi}{4}$
(3) $\frac{3 \pi}{4}$
(4) $-\frac{3 \pi}{4}$
11. The principal value of $\sin ^{-1}\left(-\frac{\sqrt{3}}{2}\right)$ is equal to :
(1) $-\frac{2 \pi}{3}$
(2) $\frac{4 \pi}{3}$
(3) $-\frac{\pi}{3}$
(4) $\frac{5 \pi}{3}$
12. If $A=\left[\begin{array}{cc}1 & 0 \\ -1 & 7\end{array}\right]$ and $A^{2}=8 A+K I_{2}$, then K is equal to :
(1) -1
(2) 1
(3) 7
(4) -7
13. If $A=\left[\begin{array}{ccc}2 & 3 & 4 \\ 5 & -3 & 8 \\ 9 & 2 & 16\end{array}\right]$, then trace of A is :
(1) 15
(2) 17
(3) 8
(4) 25
14. If A is a square matrix of order $n \times n$, then $\operatorname{adj}(\operatorname{adj} A)$ is equal to :
(1) $|A|^{n} A$
(2) $|A|^{n-2} A$
(3) $|A|^{n-1} A$
(4) $|A|^{n-3} A$
15. If α, β are non-real numbers satisfying $x^{3}-1=0$, then the value of $\left|\begin{array}{ccc}\lambda+1 & \alpha & \beta \\ \alpha & \lambda+\beta & 1 \\ \beta & 1 & \lambda+\alpha\end{array}\right|$ is equal to :
(1) λ^{3}
(2) $\lambda^{3}+1$
(3) $\lambda^{3}-1$
(4) 0
16. The value of x for which the matrix $A=\left[\begin{array}{cc}6 & x-2 \\ 3 & x\end{array}\right]$ has no inverse is :
(1) 0
(2) 2
(3) -2
(4) 3
17. If $A=\left(\begin{array}{cc}1 & x+3 \\ 2 x+1 & x-1\end{array}\right)$ is symmetric, then x is equal to :
(1) 5
(2) 7
(3) 3
(4) 2
18. If $2^{x}+2^{y}=2^{x+y}$, then the value of $\frac{d y}{d x}$ at $x=y=1$ is :
(1) 0
(2) -1
(3) 1
(4) 2
19. If a, b, c are three unequal numbers such that a, b, c are in A.P. and $b-a, c-b, a$ are in G.P., then $a: b: c$ is equal to :
(1) $1: 2: 3$
(2) $1: 2: 4$
(3) $3: 2: 1$
(4) $2: 3: 5$

PG(Hons)-EE-June, 2023/(Mathematics (Hons.)Five Year)(SET-X)/(C)

12. If $\sum n, \frac{\sqrt{10}}{3} \sum n^{2}, \sum n^{3}$ are in G.P., then the value of n is :
(1) 3
(2) 1
(3) 0
(4) 4
13. The equation of straight line passing through the point $(1,2)$ and perpendicular to the line $x+y+1=0$ is :
(1) $x-y=5$
(2) $x+y=5$
(3) $x+y=1$
(4) $x-y=1$
14. The straight lines $x+y=0,3 x+y-4=0$, and $x+3 y-4=0$ form a triangle which is :
(1) Right angled
(2) Equilateral
(3) Isosceles
(4) None of these
15. The locus of the mid-point of the distance between the axes of the variable line $x \cos \alpha+y \sin \alpha=p$, where p is constant, is :
(1) $\frac{1}{x^{2}}+\frac{1}{y^{2}}=\frac{4}{p^{2}}$
(2) $x^{2}+y^{2}=\frac{4}{p^{2}}$
(3) $\frac{1}{x^{2}}-\frac{1}{y^{2}}=\frac{4}{p^{2}}$
(4) $x^{2}-y^{2}=\frac{4}{p^{2}}$
16. The points $(-a,-b),(0,0),(a, b)$ and $\left(a^{2}, a b\right)$ are :
(1) Vertices of a rectangle
(2) Vertices of a square
(3) Vertices of a parallelogram
(4) Collinear
17. Radius of the largest circle which passes through the focus of the parabola $y^{2}=4 x$ and contained in it, is :
(1) 4
(2) 8
(3) 2
(4) 5
18. The length of the latus rectum of an ellipse is one third of the major axis. its eccentricity would be
(1) $\frac{1}{\sqrt{3}}$
(2) $\sqrt{\frac{2}{3}}$
(3) $\frac{1}{\sqrt{2}}$
(4) $\frac{2}{3}$
19. If $(a-2) x^{2}+a y^{2}=4$ represents rectangular hyperbola, then a equals :
(1) 0
(2) 2
(3) 1
(4) 3
20. The line joining the points $(1,1,2)$ and $(3,-2,1)$ meets the plane $3 x+2 y+z=6$ at the point :
(1) $(1,1,2)$
(2) $(2,3,-1)$
(3) $(3,2,1)$
(4) $(3,-2,1)$
21. If $A=\{x, y\}$, then which of the following statement is true ?
(1) $\phi \in A$
(2) $y \subseteq A$
(3) $\{y\} \in A$
(4) $\{x\} \subseteq A$
22. If A is any set, then :
(1) $A \cup A=A$
(2) $A \cup A=\phi$
(3) $A \cup A=\{A, \phi\}$
(4) $A \cup A=\{0\}$
23. In a class of 60 boys, there are 45 boys who play cards and 30 boys who play carrom. How many boys play cards only?
(1) 15
(2) 30
(3) 20
(4) 10
24. Which of the following functions is neither even nor odd?
(1) $x^{2}+7$
(2) $x^{7}+2 x^{5}$
(3) $|x|+4$
(4) $x+2$
25. If $\mathrm{A}=\{1,3,5,7\}$ and $\mathrm{B}=\{2,5\}$, then the number of relations from A to B is :
(1) 64
(2) 128
(3) 256
(4) 512
26. If $\frac{\cos x}{a}=\frac{\cos (x+\theta)}{b}=\frac{\cos (x+2 \theta)}{c}=\frac{\cos (x+3 \theta)}{d}$, then $\frac{a+c}{b+d}$ is equal to :
(1) $\frac{a}{d}$
(2) $\frac{b}{c}$
(3) $\frac{c}{d}$
(4) $\frac{d}{a}$
27. If in a triangle $A B C, \tan A+\tan B+\tan C>0$, then the triangle is :
(1) Always acute angled triangle
(2) Always obtuse angled triangle
(3) Always equilateral triangle
(4) Nothing can be said about the type of triangle
28. The number of solutions of $\sum_{r=1}^{5} \cos r x=5$ in the interval $[0,2 \pi \mid$ is :
(1) 10
(2) 5
(3) 1
(4) 0
29. If $1+\sin \theta+\sin ^{2} \theta+$ \qquad $\infty=4+2 \sqrt{3}, 0<\theta<\pi, \theta \neq \frac{\pi}{2}$, then :
(1) $\theta=\frac{\pi}{3}$
(2) $\theta=\frac{\pi}{6}$
(3) $\frac{\pi}{3}$ or $\frac{\pi}{6}$
(4) $\theta=\frac{\pi}{3}$ or $\frac{2 \pi}{3}$
30. If the multiplicative inverse of a complex number is $\frac{(\sqrt{3}+4 i)}{19}$, then the complex number itself is :
(1) $4-i \sqrt{3}$
(2) $\sqrt{3}+4 i$
(3) $4+i \sqrt{3}$
(4) $\sqrt{3}-4 i$
31. Let p and q stand for, the statements :
'Sohan is intelligent' and 'Sohan is hardworking'. Then the statement 'Sohan is not intelligent and Sohan is hardworking' is denoted by :
(1) $p \wedge q$
(2) $\sim p \wedge \sim q$
(3) $\sim p \wedge q$
(4) None of these
32. The disjunction $p \vee q$ is false only when :
(1) p is false
(2) p and q are both false
(3) p or q are both false
(4) p is false and q may be true
33. The mean of the first n natural numbers is given by :
(1) $\frac{n}{2}$
(2) $\frac{n(n+1)}{2}$
(3) $\frac{n+1}{2 n}$
(4) $\frac{n+1}{2}$
34. Which of the following is not a merit of standard deviation ?
(1) It is based on all the items
(2) It is simple to understand
(3) It is unduly affected by the extreme items
(4) It has sampling stability
35. A measure of scatteredness of items about some average is called a measure of :
(1) Dispersion
(2) Conclusion
(3) Logic
(4) None of these
36. The coefficient of Standard Deviation (S.D.) is given by :
(1) $\left(\frac{S . D_{i}}{100}\right)$
(2) $\left(\frac{\mathrm{S} . \mathrm{D} .}{\bar{x}}\right) 100$
(3) $\left(\frac{\text { S.D. }}{\bar{x}}\right)$
(4) $\left(\frac{\bar{x}}{\text { S.D. }}\right)$
37. How many numbers are there between 100 and 1000 such that every digit is either 2 or 9 ?
(1) 8
(2) 6
(3) 4
(4) 48
38. In the expansion of $\left(x+\frac{1}{x}\right)^{6}$, the third term from the end is:
(1) $\frac{1}{x^{2}}$
(2) $\frac{15}{x^{2}}$
(3) $\frac{15}{x^{4}}$
(4) ${ }^{6} C_{4}$
39. If $\left(x^{2}-5 x+7\right)^{2}-(x-2)(x-3)=1$ and let $y=x^{2}-5 x$. Then the values of y are :
(1) $-7,-6$
(2) 3,2
(3) $-7,6$
(4) $\frac{5 \pm i \sqrt{3}}{2}$
40. For the standard ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, which of the following is true ?
(1) $a^{2}=b^{2}\left(1+e^{2}\right)$
(2) $b^{2}=a^{2}\left(e^{2}-1\right)$
(3) $a^{2}=\frac{b^{2}}{2}\left(1-e^{2}\right)$
(4) $b^{2}=a^{2}\left(1-e^{2}\right)$
41. If $f(a-x)=f(x)$, then $\int_{0}^{a} x f(x) d x$ is equal to :
(1) $\frac{a}{2} \int_{0}^{a} f(x) d x$
(2) $a \int_{0}^{a} f(x) d x$
(3) $\frac{a^{2}}{2} \int_{0}^{a} f(x) d x$
(4) $\frac{2}{a} \int_{0}^{a} f(x) d x$
42. $\int_{-1}^{1} \sin ^{3} x \cdot \cos ^{2} x d x$ is equal to :
(1) $\frac{1}{2}$
(2) 1
(3) 2
(4) 0
43. The area of the region bounded by the curve $x^{2}=4 y$, line $x=2$ and x-axis is :
(1) 1
(2) $\frac{2}{3}$
(3) $\frac{4}{3}$
(4) $\frac{8}{3}$
44. The area enclosed between the curves $y=a x^{2}, x=a y^{2}(a>0)$ is 1 sq. unit. Then the value of a is :
(1) $\frac{1}{2}$
(2) $\frac{1}{3}$
(3) $\frac{1}{\sqrt{3}}$
(4) 1

PG(Hons)-EE-June, 2023/(Mathematics (Hons.)Five Year)(SET-X)/(C)
45. If p and q are order and degree of differential equation $y^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+3 x\left(\frac{d y}{d x}\right)+x^{2} y^{2}=\sin x$. then :
(1) $p>q$
(2) $\frac{p}{q}=\frac{1}{2}$
(3) $p=q$
(4) $p<q$
46. The integrating factor of differential cquation $\frac{d y}{d x}+\frac{1}{x} y=3 x$ is :
(1) x
(2) 0
(3) e^{x}
(4) $\frac{1}{x}$
47. The solution of differential equation $(\cos x) \cos y d x+(\sin x) \sin y d y=0$ is :
(1) $\tan x=c$
(2) $\cos x=c \sin y$
(3) $\sec x-\sec y=c$
(4) $\sin x=\dot{c} \cos y$
48. The elimination of A and B from the equation $y^{2}=A x+B$ gives the differential equation of order :
(1) First
(2) Second
(3) Third
(4) Zero
49. If $\alpha=2 \hat{i}+3 \hat{j}-\hat{k}, \beta=-\hat{i}+2 \hat{j}-4 \hat{k}, \gamma=\hat{i}+\hat{j}+\hat{k}$, then $(\alpha \times \beta)$. $(\alpha \times \gamma)$ is equal to :
(1) 64
(2) 74
(3) -74
(4) -64
50. If \vec{a} and \vec{b} are two vectors such that $\vec{a} \cdot \vec{b}=0$ and $\vec{a} \times \vec{b}=\overrightarrow{0}$, then :
(1) either \vec{a} or \vec{b} is a null vector
(2) \vec{a} is parallel to \vec{b}
(3) \vec{a} is perpendicular to \vec{b}
(4) None of these
51. The length of the perpendicular from $(1,0,2)$ on the line $\frac{x+1}{3}=\frac{y-2}{-2}=\frac{z+1}{-1}$ is :
(1) $2 \sqrt{3}$
(2) $3 \sqrt{2}$
(3) $\frac{6 \sqrt{3}}{5}$
(4) $\frac{3 \sqrt{6}}{2}$
52. A plane meets the coordinate axes in A, B, C such that the centroid of the triangle $A B C$ is the point (a, a, a). If the equation of the plane is $x+y+z=p$, then p is :
(1) a
(2) $\frac{a}{3}$
(3) $3 a$
(4) $\frac{3}{a}$
53. $\lim _{x \rightarrow 0} \frac{\sin \left(\pi \cos ^{2} x\right)}{x^{2}}$ is :
(1) $-\pi$
(2) π
(3) $\frac{\pi}{2}$
(4) 1
54. Let $f(x)=3 x^{10}-7 x^{8}+5 x^{6}-21 x^{3}+3 x^{2}-7$. Then $\lim _{h \rightarrow 0} \frac{f(1-h)-f(1)}{h^{3}+3 h}$ is equal to :
(1) $\frac{53}{3}$
(2) $\frac{25}{3}$
(3) $\frac{50}{3}$
(4) $\frac{22}{3}$
55. If $y=\sqrt{x+\sqrt{x+\sqrt{x+\ldots \ldots \ldots . . \infty}}}$, then $\frac{d y}{d x}$ is equal to :
(1) $2 \sqrt{x}$
(2) $\frac{1}{2 y-1}$
(3) \sqrt{x}
(4) None of these

PG(Hons)-EE-June, 2023/(Mathematics (Hons.)Five Year)(SET-X)/(C)
56. If $\sin (x+y)=\log _{e}(x+y)$, then $\frac{d y}{d x}$ is equal to :
(1) 2
(2) 1
(3) -1
(4) -2
57. Two small square on a chess board are chosen at random. Probability that they have a common side is :
(1) $\frac{1}{3}$
(2) $\frac{1}{9}$
(3) $\frac{5}{18}$
(4) $\frac{1}{18}$
58. For n independent events $A_{i}, P\left(A_{i}\right)=\frac{1}{(1+i)}, i=1,2,3, \ldots \ldots \ldots, n$. The probability that at least one of the events occurs is :
(1) $\frac{1}{n}$
(2) $\frac{1}{(n+1)}$
(3) $\frac{n}{(n+1)}$
(4) None of these
59. Two dice are thrown, the probability that the sum of the points on two dice will be 7 is :
(1) $\frac{5}{36}$
(2) $\frac{6}{36}$
(3) $\frac{7}{36}$
(4) $\frac{8}{36}$
60. A single letter is selected at random from the word "PROBABILITY". The probability that it is a vowel, is :
(1) $\frac{3}{11}$
(2) $\frac{4}{11}$
(3) $\frac{2}{11}$
(4) zero
p. T. O.
61. The two vectors $\vec{a}=2 \hat{i}+\hat{j}+3 \hat{k}, \vec{b}=4 \hat{i}-\lambda \hat{j}+6 \hat{k}$ are parallel if λ is equal to :
(1) 2
(2) -3
(3) 3
(4) -2
62. If a straight line in space is equally inclined to the co-ordinate axes, the cosine of its angle of inclination to any one of the axes is :
(1) $\frac{1}{\sqrt{3}}$
(2) $\frac{1}{3}$
(3) $\frac{1}{2}$
(4) $\frac{1}{\sqrt{2}}$
63. If the lines $\frac{x-1}{2}, \frac{y+1}{3}=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-k}{2}=\frac{z}{1}$ intersect, then the value of k is :
(1) $\frac{3}{2}$
(2) $\frac{2}{3}$
(3) $\frac{9}{2}$
(4) $-\frac{3}{2}$
64. Distance of the point $(2,3,4)$ from the plane $3 x-6 y+2 z+11=0$ is :
(1) 2
(2) 1
(3) 0
(4) 3
65. If the straight line $\frac{x-3}{-4}=\frac{y-4}{-7}=\frac{z+3}{13}$ lies in the plane $5 x-y+z=a$, then a is equal to :
(1) 8
(2) 9
(3) 2
(4) -3
66. A fair coin is tossed repeatedly. If tail appears on first four tosses, then the probability of head appearing on fifth toss is :
(1) $\frac{1}{5}$
(2) $\frac{31}{32}$
(3) $\frac{1}{32}$
(4) $\frac{1}{2}$
67. Seven white balls and three black balls are placed in a row. The probability that no two black balls are placed adjacently equals :
(1) $\frac{1}{3}$
(2) $\frac{2}{15}$
(3) $\frac{7}{15}$
(4) $\frac{4}{15}$
68. A man is known to speak truth in 75% cases. If he throws an unbiased die and tells his friends that it is a six, then the probability that it is actually a six, is :
(1) $\frac{1}{6}$
(2) $\frac{1}{8}$
(3) $\frac{3}{8}$
(4) $\frac{3}{4}$
69. Let $f: R \rightarrow R$ be defined by $f(x)=3 x-4$, then $f^{-1}(x)$ is equal to :
(1) $\frac{1}{3}(x+4)$
(2) $\frac{x}{3}-4$
(3) $3 x+4$
(4) Not defined
70. The function $f: R \rightarrow R$ defined by $f(x)=(x-1)(x-2)(x-3)$ is :
(1) one-one but not onto
(2) onto but not one-one
(3) both one-one and onto
(4) neither one-one nor onto
71. A linear function $Z=a x+b y$, where a, b are constants, which has to be maximized or minimized is called a linear :
(1) Subjective function
(2) Collective function
(3) Objective function
(4) None of these
72. Any point in the feasible region that gives the maximum or minimum value of the objective function is called an :
(1) Optical solution
(2) Optimal solution
(3) Practical solution
(4) None of these
73. Ten eggs are drawn successively with replacement from a lot containing 10% defective eggs. Find the probability that there is at least one defective egg :
(1) $1-\frac{9^{10}}{10^{10}}$
(2) $1-\frac{9^{10}-1}{10^{10}}$
(3) $1-\frac{9^{9}}{10^{9}}$
(4) $1-\frac{9^{10}}{10^{9}}$
74. Let X be a random variable whose possible values $x_{1}, x_{2}, x_{3}, \ldots \ldots, x_{n}$ occur with probabilities $p_{1}, p_{2}, p_{3}, \ldots \ldots, p_{n}$. The mean of random variable X is given by :
(1) $E(X)=\sum_{i=1}^{n} \frac{p_{i}}{x_{i}}$
(2) $E(X)=\sum_{i=1}^{n} \frac{x_{i}}{p_{i}}$
(3) $E(X)=\sum_{i=1}^{n}\left(p_{i}+x_{i}\right)$
(4) $E(X)=\sum_{i=1}^{n} p_{i} x_{i}$
75. A region is said to be convex, if the line segment joining any two arbitrary points of the region lies :
(1) Entirely within the region
(2) Entirely outside the region
(3) Anywhere within or outside the region
(4) None of these
76. If $P(n)$ is the statement, " $\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\ldots \ldots \ldots+\frac{1}{n(n+1)}=\frac{n}{n+1}$ ", where $n \in N$, then $P(2)$ is the statement :
(1) $\frac{1}{2}+\frac{1}{6}=\frac{2}{3}$
(2) $\frac{1}{1 \times 2}=\frac{1}{1+1}$
(3) $\frac{1}{1 \times 2}+\frac{1}{3 \times 4}=\frac{7}{12}$
(4) None of these
77. The solution of linear inequation $2 x+10 \geq 0$ is :
(1) $x \in(-5, \infty)$
(2) $x \in(-\infty, \infty)$
(3) $x \in[-5, \infty)$
(4) $x \leq-5$
78. Which of the following is not correct ?
(1) $x \geq 4 \Rightarrow x-3 \geq 1$
(2) $x \leq y \Rightarrow-3 x \geq-3 y$
(3) $2 x-6 y \geq 0 \Rightarrow x \geq 3 y$
(4) $4 x \geq 8 \Rightarrow x \leq 2$
79. A company manufactures toys and its cost equation for a week is $C \quad 300 \quad 1.5 \mathrm{r}$ and its revenue equation is $R-2 x$, where x is the number of toys sold in a week. How many toys must be sold for the company to realize a profit?
(1) Between 500 and 600
(2) More than 600
(3) At most 550
(4) None of these
80. A sentence is a statement if it is :
(1) Always true
(2) Always false
(3) Either true or false but not both
(4) Sometimes true, sometimes false
81. If $1, \omega \omega^{2}$ are the three cube roots of unity, then the roots of the equation $(x-1)^{3}=8$ are :
(1) $3,1+2 \omega, 1+2 \omega^{2}$
(2) $-1,-1,-2 \omega$
(3) $3,2 \omega, 2 \omega^{2}$
(4) None of these
82. If one root of the equation $x^{2}-\lambda x+12=0$ is even prime, and $x^{2}+\lambda x+\mu=0$ has equal roots, then μ is :
(1) 8
(2) 16
(3) 24
(4) 32
83. If α, β are roots of the equation $8 x^{2}-3 x+27=0$, then the value of $\left[\left(\frac{\alpha^{2}}{\beta}\right)^{1 / 3}+\left(\frac{\beta^{2}}{\alpha}\right)^{1 / 3}\right]$ is :
(1) $\frac{1}{6}$
(2) $\frac{1}{5}$
(3) $\frac{1}{4}$
(4) $\frac{1}{3}$
84. The number of arrangements of the letters of the word BANANA in which the two $\mathrm{N}^{\prime} \mathrm{s}$ do not appear adjacently is :
(1) 100
(2) 80
(3) 60
(4) 40
85. The maximum number of points of intersection of 8 straight lines, is :
(1) 28
(2) 56
(3) 8
(4) 16
86. Total number of words formed by using 2 vowels and 3 consonants taken from 4 vowels and 5 consonants is equal to :
(1) 60
(2) 120
(3) 720
(4) None of these
87. If the co-efficient of x^{3} in the expansion of $(1+a x)^{4}$ is 32 , then a equals :
(1) 4
(2) 3
(3) 2
(4) 6
88. If the sum of the binomial coefficients in the expansion of $\left(x+\frac{1}{x}\right)^{n}$ is 64 , then the term independent of x is equal to :
(1) 40
(2) 20
(3) 60
(4) 30
89. A series whose nth term is $\frac{n}{x}+y$, the sum of r terms will be :
(1) $\frac{r(r+1)}{2 x}+r y$
(2) $\frac{r(r-1)}{2 x}$
(3) $\frac{r}{2 x}+r y$
(4) $\frac{r(r-1)}{2 x}+r y$
90. If a, b, c are in G.P., then $\frac{b-a}{b-c}+\frac{b+a}{b+c}$ is equal to
(1) $b^{2}-c^{2}$
(2) $a b$
(3) $a c$
(4) zero
91. If $y^{2}=a x^{2}+b x+c$, then $y^{3} \frac{d^{2} y}{d x^{2}}$ is :
(1) a constant
(2) a function of x only
(3) a function of y only
(4) a function of x and y
92. Let f be a function satisfying $f(x+\dot{y})=f(x)+f(y)$ and $f(x)=x^{2} g(x)$ for all x and y, where $g(x)$ is a continuous function, then $f^{\prime}(x)$ is equal to :
(1) $g^{\prime}(x)$
(2) $g(0)$
(3) $g(0)+g^{\prime}(x)$
(4) 0
93. Which of the following is not continuous for all x ?
(1) $x^{2}-\left|x-x^{3}\right|$
(2) $\frac{\cos x}{|\cos x|}$
(3) $|x-1|+|x-2|$
(4) $\sin |x|+|\sin x|$
94. The line $\frac{x}{a}+\frac{y}{b}=1$ touches the curve $y=b e^{-x / a}$ at the point :
(1) $\left(a, \frac{b}{a}\right)$
(2) $\left(-a, \frac{b}{a}\right)$
(3) $\left(a,-\frac{b}{a}\right)$
(4) None of these
95. If $a<0$, the function $f(x)=e^{a x}+e^{-a x}$ is a monotonically decreasing function for values of x given by :
(1) $x<1$
(2) $x>1$
(3) $x<0$
(4) $x>0$
96. Let $f(x)$ be differential function for all x. If $f(1)=-2$ and $f^{\prime}(x) \geq 2$ for all x in $[1,6]$, then minimum value of $f(6)$ is equal to :
(1) 8
(2) 6
(3) 4
(4) 2
97. $\int \frac{10 x^{9}+10^{x} \log _{e} 10}{10^{x}+x^{10}} d x$ is equal to :
(1) $\log \left(10^{x}+x^{10}\right)+c$
(2) $\frac{1}{10^{x}+x^{10}}+c$
(3) $\log \left(x^{9}+10^{x}+x^{10}\right)+c$
(4) None of these
98. $\int \sec ^{3} x d x$ is equal to :
(1) $\frac{1}{3}[\sec x \cdot \tan x+\log (\sec x+\tan x)]$
(2) $\frac{1}{2}[\sec x \cdot \tan x+\log (\sec x+\tan x)]$
(3) $\frac{1}{4}[\sec x \cdot \tan x+\log (\sec x+\tan x)]$
(4) $\tan x \cdot \sec ^{2} x$
99. $\int \frac{x-1}{(x-3)(x-2)} d x$ is equal to :
(1) $\log (x-3)^{2}+\log (x-2)+c$
(2) $\log (x-3)+\log (x-2)+c$
(3) $\log (x-3)^{2}-\log (x-2)+c$
(4) $\log (x-3)-\log (x-2)+c$
100. $\int \frac{d x}{x^{2}+x+1}$ is equal to :
(1) $\frac{\sqrt{3}}{2} \tan ^{-1}\left(\frac{2 x+1}{\sqrt{3}}\right)+c$
(2) $\tan ^{-1}\left(\frac{2 x+1}{\sqrt{3}}\right)+c$
(3) $\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{2 x+1}{\sqrt{3}}\right)+c$
(4) $\frac{2}{\sqrt{3}} \tan ^{-1}\left(\frac{2 x+1}{\sqrt{3}}\right)+c$

Mathematics (Hons.) Five Year Integrated

Sr. No.
Max. Marks : 100
Total Questions : 100
Time: 111/4 Hours
Roll No. (in figures) \qquad (in words) \qquad
Name \qquad Date of Birth \qquad
Father's Name \qquad Mother's Name \qquad
Date of Examination \qquad
(Signature of the Candidate)
(Signature of the Invigilator)

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

1. All questions are compulsory.
2. The candidates must return the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfairmeans / mis-behaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
4. Question Booklet along with answer key of all the A, B, C \& D code shall be got uploaded on the University Website immediately after the conduct of Entrance Examination. Candidates may raise valid objection/complaint if any, with regard to discrepancy in the question booklet/answer key within 24 hours of uploading the same on the University Website. The complaint be sent by the students to the Controller of Examinations by hand or through email. Thereafter, no complaint in any case, will be considered.
5. The candidate must not do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers must not be ticked in the question booklet.
6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
7. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
8. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.
PG(Hons)-EE-June, 2023/(Mathematics (Hons.) Five Year)(SET-X)/(D)
9. If $1, \omega \omega^{2}$ are the three cube roots of unity, then the roots of the equation $(x-1)^{3}=8$ are :
(1) $3,1+2 \omega, 1+2 \omega^{2}$
(2) $-1,-1,-2 \omega$
(3) $3,2 \omega, 2 \omega^{2}$
(4) None of these
10. If one root of the equation $x^{2}-\lambda x+12=0$ is even prime, and $x^{2}+\lambda x+\mu=0$ has equal roots, then μ is :
(1) 8
(2) 16
(3) 24
(4) 32
11. If α, β are roots of the equation $8 x^{2}-3 x+27=0$, then the value of $\left[\left(\frac{\alpha^{2}}{\beta}\right)^{1 / 3}+\left(\frac{\beta^{2}}{\alpha}\right)^{1 / 3}\right]$ is :
(1) $\frac{1}{6}$
(2) $\frac{1}{5}$
(3) $\frac{1}{4}$
(4) $\frac{1}{3}$
12. The number of arrangements of the letters of the word BANANA in which the two N's do not appear adjacently is :
(1) 100
(2) 80
(3) 60
(4) 40
13. The maximum number of points of intersection of 8 straight lines, is :
(1) 28
(2) 56
(3) 8
(4) 16
14. Total number of words formed by using 2 vowcls and 3 consonants taken from 4 vowels and 5 consonants is cqual to :
(1) 60
(2) 120
(3) 720
(4) None of these
15. If the co-efficient of x^{3} in the expansion of $(1+a x)^{4}$ is 32 , then a equals :
(1) 4
(2) 3
(3) 2
(4) 6
16. If the sum of the binomial coefficients in the expansion of $\left(x+\frac{1}{x}\right)^{n}$ is 64 , then the term independent of x is equal to :
(1) 40
(2) 20
(3) 60
(4) 30
17. A series whose nth term is $\frac{n}{x}+y$, the sum of r terms will be :
(1) $\frac{r(r+1)}{2 x}+r y$
(2) $\frac{r(r-1)}{2 x}$
(3) $\frac{r}{2 x}+r y$
(4) $\frac{r(r-1)}{2 x}+r y$
18. If a, b, c are in G.P., then $\frac{b-a}{b-c}+\frac{b+a}{b+c}$ is equal to :
(1) $b^{2}-c^{2}$
(2) $a b$
(3) $a c$
(4) zero
19. Let p and q stand for, the statements :
'Sohan is intelligent' and 'Sohan is hardworking'. Then the statement 'Sohan is not imtelligent and Sohan is hardworking' is denoted by :
(1) $p \wedge q$
(2) $\sim p \wedge \sim q$
(3) $\sim p \wedge q$
(4) None of these

PG(Hons)-EE.Junc, 2023/(Mathematics (Hons.)Five Year)(SET.X)/(D)

12. The disjunction $p \vee q$ is false only when :
(1) p is false
(2) p and q are both false
(3) p or q are both false
(4) p is false and q may be true
13. The mean of the first n natural numbers is given by :
(1) $\frac{n}{2}$
(2) $\frac{n(n+1)}{2}$
(3) $\frac{n+1}{2 n}$
(4) $\frac{n+1}{2}$
14. Which of the following is not a merit of standard deviation?
(1) It is based on all the items
(2) It is simple to understand
(3) It is unduly affected by the extreme items
(4) It has sampling stability
15. A measure of scatteredness of items about some average is called a measure of :
(1) Dispersion
(2) Conclusion
(3) Logic
(4) None of these
16. The coefficient of Standard Deviation (S.D.) is given by :
(1) $\left(\frac{\text { S.D. }}{100}\right)$
(2) $\left(\frac{\text { S.D. }}{\bar{x}}\right) 100$
(3) $\left(\frac{\text { S.D. }}{\bar{x}}\right)$
(4) $\left(\frac{\bar{x}}{\text { S.D. }}\right)$
17. How many numbers are there between 100 and 1000 such that every digit is either 2 or 9 ?
(1) 8
(2) 6
(3) 4
(4) 48
18. In the expansion of $\left(x+\frac{1}{x}\right)^{6}$, the third term from the end is :
(1) $\frac{1}{x^{2}}$
(2) $\frac{15}{x^{2}}$
(3) $\frac{15}{x^{4}}$
(4) ${ }^{6} C_{4}$
19. If $\left(x^{2}-5 x+7\right)^{2}-(x-2)(x-3)=1$ and let $y=x^{2}-5 x$. Then the values of y are :
(1) $-7,-6$
(2) 3,2
(3) $-7,6$
(4) $\frac{5 \pm i \sqrt{3}}{2}$
20. For the standard ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, which of the following is true ?
(1) $a^{2}=b^{2}\left(1+e^{2}\right)$
(2) $b^{2}=a^{2}\left(e^{2}-1\right)$
(3) $a^{2}=\frac{b^{2}}{2}\left(1-e^{2}\right)$
(4) $b^{2}=a^{2}\left(1-e^{2}\right)$
21. The two vectors $\vec{a}=2 \hat{i}+\hat{j}+3 \hat{k}, \vec{b}=4 \hat{i}-\lambda \hat{j}+6 \hat{k}$ are parallel if λ is equal to :
(1) 2
(2) -3
(3) 3
(4) -2
22. If a straight line in space is equally inclined to the co-ordinate axes, the cosine of its angle of inclination to any one of the axes is :
(1) $\frac{1}{\sqrt{3}}$
(2) $\frac{1}{3}$
(3) $\frac{1}{2}$
(4) $\frac{1}{\sqrt{2}}$
23. If the lines $\frac{x-1}{2}, \frac{y+1}{3}=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-k}{2}=\frac{z}{1}$ intersect, then the value of k is :
(1) $\frac{3}{2}$
(2) $\frac{2}{3}$
(3) $\frac{9}{2}$
(4) $-\frac{3}{2}$
24. Distance of the point $(2,3,4)$ from the plane $3 x-6 y+2 z+11=0$ is :
(1) 2
(2) 1
(3) 0
(4) 3
25. If the straight line $\frac{x-3}{-4}=\frac{y-4}{-7}=\frac{z+3}{13}$ lies in the plane $5 x-y+z=a$, then a is cqual to :
(1) 8
(2) 9
(3) 2
(4) -3
26. A fair coin is tossed repeatedly. If tail appears on first four tosses, then the probability of head appearing on fifth toss is :
(1) $\frac{1}{5}$
(2) $\frac{31}{32}$
(3) $\frac{1}{32}$
(4) $\frac{1}{2}$
27. Seven white balls and three black balls are placed in a row. The probability that no two black balls are placed adjacently equals :
(1) $\frac{1}{3}$
(2) $\frac{2}{15}$
(3) $\frac{7}{15}$
(4) $\frac{4}{15}$
28. A man is known to speak truth in 75% cases. If he throws an unbiased dic and tells his friends that it is a six, then the probability that it is actually a six, is :
(1) $\frac{1}{6}$
(2) $\frac{1}{8}$
(3) $\frac{3}{8}$
(4) $\frac{3}{4}$
29. Let $f: R \rightarrow R$ be defined by $f(x)=3 x-4$, then $f^{-1}(x)$ is equal to :
(1) $\frac{1}{3}(x+4)$
(2) $\frac{x}{3}-4$
(3) $3 x+4$
(4) Not defined
30. The function $f: R \rightarrow R$ defined by $f(x)=(x-1)(x-2)(x-3)$ is :
(1) one-one but not onto
(2) onto but not one-one
(3) both one-one and onto
(4) neither one-one nor onto
31. If $y^{2}=a x^{2}+b x+c$, then $y^{3} \frac{d^{2} y}{d x^{2}}$ is :
(1) a constant
(2) a function of x only
(3) a function of y only
(4) a function of x and y
32. Let f be a function satisfying $f(x+y)=f(x)+f(y)$ and $f(x)=x^{2} g(x)$ for all x and y, where $g(x)$ is a continuous function, then $f^{\prime}(x)$ is equal to :
(1) $g^{\prime}(x)$
(2) $g(0)$
(3) $g(0)+g^{\prime}(x)$
(4) 0

PG(Hons)-EE-June, 2023/(Mathematics (Hons.)Five Year)(SET-X)/(D)

D
33. Which of the following is not continuous for all x ?
(1) $x^{2}-\left|x-x^{3}\right|$
(2) $\frac{\cos x}{|\cos x|}$
(3) $|x-1|+|x-2|$
(4) $\sin |x|+|\sin x|$
34. The line $\frac{x}{a}+\frac{y}{b}=1$ touches the curve $y=b e^{-x / a}$ at the point:
(1) $\left(a, \frac{b}{a}\right)$
(2) $\left(-a, \frac{b}{a}\right)$
(3) $\left(a,-\frac{b}{a}\right)$
(4) None of these
35. If $a<0$, the function $f(x)=e^{a x}+e^{-a x}$ is a monotonically decreasing function for values of x given by :
(1) $x<1$
(2) $x>1$
(3) $x<0$
(4) $x>0$
36. Let $f(x)$ be differential function for all x. If $f(1)=-2$ and $f^{\prime}(x) \geq 2$ for all x in $[1,6]$, then minimum value of $f(6)$ is equal to :
(1) 8
(2) 6
(3) 4
(4) 2
37. $\int \frac{10 x^{9}+10^{x} \log _{e} 10}{10^{x}+x^{10}} d x$ is equal to :
(1) $\log \left(10^{x}+x^{10}\right)+c$
(2) $\frac{1}{10^{x}+x^{10}}+c$
(3) $\log \left(x^{9}+10^{x}+x^{10}\right)+c$
(4) None of these
38. $\int \sec ^{3} x d x$ is equal to :
(1) $\frac{1}{3}[\sec x \cdot \tan x+\log (\sec x+\tan x)]$
(2) $\frac{1}{2}[\sec x \cdot \tan x+\log (\sec x+\tan x)]$
(3) $\frac{1}{4}[\sec x \cdot \tan x+\log (\sec x+\tan x)]$
(4) $\tan x \cdot \sec ^{2} x$
39. $\int \frac{x-1}{(x-3)(x-2)} d x$ is equal to :
(1) $\log (x-3)^{2}+\log (x-2)+c$
(2) $\log (x-3)+\log (x-2)+c$
(3) $\log (x-3)^{2}-\log (x-2)+c$
(4) $\log (x-3)-\log (x-2)+c$
40. $\int \frac{d x}{x^{2}+x+1}$ is equal to :
(1) $\frac{\sqrt{3}}{2} \tan ^{-1}\left(\frac{2 x+1}{\sqrt{3}}\right)+c$
(2) $\tan ^{-1}\left(\frac{2 x+1}{\sqrt{3}}\right)+c$
(3) $\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{2 x+1}{\sqrt{3}}\right)+c$
(4) $\frac{2}{\sqrt{3}} \tan ^{-1}\left(\frac{2 x+1}{\sqrt{3}}\right)+c$

D
41. The length of the perpendicular from $(1,0,2)$ on the line $\frac{x+1}{3}=\frac{y-2}{-2}=\frac{z+1}{-1}$ is :
(1) $2 \sqrt{3}$
(2) $3 \sqrt{2}$
(3) $\frac{6 \sqrt{3}}{5}$
(4) $\frac{3 \sqrt{6}}{2}$
42. A plane meets the coordinate axes in A, B, C such that the centroid of the triangle $A B C$ is the point (a, a, a). If the equation of the plane is $x+y+z=p$, then p is :
(1) a
(2) $\frac{a}{3}$
(3) $3 a$
(4) $\frac{3}{a}$
43. $\lim _{x \rightarrow 0} \frac{\sin \left(\pi \cos ^{2} x\right)}{x^{2}}$ is :
(1) $-\pi$
(2) π
(3) $\frac{\pi}{2}$
(4) 1
44. Let $f(x)=3 x^{10}-7 x^{8}+5 x^{6}-21 x^{3}+3 x^{2}-7$. Then $\lim _{h \rightarrow 0} \frac{f(1-h)-f(1)}{h^{3}+3 h}$ is equal to :
(1) $\frac{53}{3}$
(2) $\frac{25}{3}$
(3) $\frac{50}{3}$
(4) $\frac{22}{3}$
45. If $y=\sqrt{x+\sqrt{x+\sqrt{x+\ldots \ldots \ldots . . \infty}}}$, then $\frac{d y}{d x}$ is equal to :
(1) $2 \sqrt{x}$
(2) $\frac{1}{2 y-1}$
(3) \sqrt{x}
(4) None of these
46. If $\sin (x+y)=\log _{e}(x+y)$, then $\frac{d y}{d x}$ is equal to :
(1) 2
(2) 1
(3) -1
(4) -2
47. Two small square on a chess board are chosen at random. Probability that they have a common side is :
(1) $\frac{1}{3}$
(2) $\frac{1}{9}$
(3) $\frac{5}{18}$
(4) $\frac{1}{18}$
48. For n independent events $A_{i}, P\left(A_{i}\right)=\frac{1}{(1+i)}, i=1,2,3, \ldots \ldots \ldots, n$. The probability that at least one of the events occurs is :
(1) $\frac{1}{n}$
(2) $\frac{1}{(n+1)}$
(3) $\frac{n}{(n+1)}$
(4) None of these
49. Two dice are thrown, the probability that the sum of the points on two dice will be 7 is :
(1) $\frac{5}{36}$
(2) $\frac{6}{36}$
(3) $\frac{7}{36}$
(4) $\frac{8}{36}$
50. A single letter is selected at random from the word "PROBABILITY". The probability
that it is a vowel, is :
(1) $\frac{3}{11}$
(2) $\frac{4}{11}$
(3) $\frac{2}{11}$
(4) zero
51. If a, b, c are three unequal numbers such that a, b, c are in A.P. and $b-a, c-b, a$ are in G.P., then $a: b: c$ is equal to :
(1) $1: 2: 3$
(2) $1: 2: 4$
(3) $3: 2: 1$
(4) $2: 3: 5$
52. If $\Sigma n, \frac{\sqrt{10}}{3} \sum n^{2}, \sum n^{3}$ are in G.P., then the value of n is :
(1) 3
(2) 1
(3) 0
(4) 4
53. The equation of straight line passing through the point $(1,2)$ and perpendicular to the line $x+y+1=0$ is :
(1) $x-y=5$
(2) $x+y=5$
(3) $x+y=1$
(4) $x-y=1$
54. The straight lines $x+y=0,3 x+y-4=0$, and $x+3 y-4=0$ form a triangle which is :
(1) Right angled
(2) Equilateral
(3) Isosceles
(4) None of these
55. The locus of the mid-point of the distance between the axes of the variable line $x \cos \alpha+y \sin \alpha=p$, where p is constant, is :
(1) $\frac{1}{x^{2}}+\frac{1}{y^{2}}=\frac{4}{p^{2}}$
(2) $x^{2}+y^{2}=\frac{4}{p^{2}}$
(3) $\frac{1}{x^{2}}-\frac{1}{y^{2}}=\frac{4}{p^{2}}$
(4) $x^{2}-y^{2}=\frac{4}{p^{2}}$
56. The points $(-a,-b),(0,0),(a, b)$ and $\left(a^{2}, a b\right)$ are :
(1) Vertices of a rectangle
(2) Vertices of a square
(3) Vertices of a parallelogram
(4) Collinear
57. Radius of the largest circle which passes through the focus of the parabola $y^{2}=4 x$ and contained in it, is :
(1) 4
(2) 8
(3) 2
(4) 5
58. The length of the latus rectum of an ellipse is one third of the major axis, its eccentricity would be :
(1) $\frac{1}{\sqrt{3}}$
(2) $\sqrt{\frac{2}{3}}$
(3) $\frac{1}{\sqrt{2}}$
(4) $\frac{2}{3}$
59. If $(a-2) x^{2}+a y^{2}=4$ represents rectangular hyperbola, then a equals :
(1) 0
(2) 2
(3) 1
(4) 3
60. The line joining the points $(1,1,2)$ and $(3,-2,1)$ meets the plane $3 x+2 y+z=6$ at the
point :
(1) $(1,1,2)$
(2) $(2,3,-1)$
(3) $(3,2,1)$
(4) $(3,-2,1)$
61. If $4 \sin ^{-1} x+\cos ^{-1} x=\pi$, then x is equal to :
(1) 0
(2) $\frac{1}{2}$
(3) $\frac{\sqrt{3}}{2}$
(4) $\frac{1}{\sqrt{2}}$

PG(Hons)-EE-June, 2023/(Mathematics (Hons.)Five Year)(SET-X)/(D)

62. $\tan ^{-1}\left(\tan \frac{3 \pi}{4}\right)$ is equal to :
(1) $-\frac{\pi}{4}$
(2) $\frac{\pi}{4}$
(3) $\frac{3 \pi}{4}$
(4) $-\frac{3 \pi}{4}$
63. The principal value of $\sin ^{-1}\left(-\frac{\sqrt{3}}{2}\right)$ is equal to :
(1) $-\frac{2 \pi}{3}$
(2) $\frac{4 \pi}{3}$
(3) $-\frac{\pi}{3}$
(4) $\frac{5 \pi}{3}$
64. If $A=\left[\begin{array}{cc}1 & 0 \\ -1 & 7\end{array}\right]$ and $A^{2}=8 A+K I_{2}$, then K is equal to :
(1) -1
(2) 1
(3) 7
(4) -7
65. If $A=\left[\begin{array}{ccc}2 & 3 & 4 \\ 5 & -3 & 8 \\ 9 & 2 & 16\end{array}\right]$, then trace of A is :
(1) 15
(2) 17
(3) 8
(4) 25
66. If A is a square matrix of order $n \times n$, then $\operatorname{adj}(\operatorname{adj} A)$ is equal to :
(1) $|A|^{n} A$
(2) $|A|^{n-2} A$
(3) $|A|^{n-1} A$
(4) $|A|^{n-3} A$
67. If α, β are non-real numbers satisfying $x^{3}-1=0$, then the value of $\left|\begin{array}{ccc}\lambda+1 & \alpha & \beta \\ \alpha & \lambda+\beta & 1 \\ \beta & 1 & \lambda+\alpha\end{array}\right|$ is equal to :
(1) λ^{3}
(2) $\lambda^{3}+1$
(3) $\lambda^{3}-1$
(4) 0
68. The value of x for which the matrix $A=\left[\begin{array}{cc}6 & x-2 \\ 3 & x\end{array}\right]$ has no inverse is :
(1) 0
(2) 2
(3) -2
(4) 3
69. If $A=\left(\begin{array}{cc}1 & x+3 \\ 2 x+1 & x-1\end{array}\right)$ is symmetric, then x is equal to :
(1) 5
(2) 7
(3) 3
(4) 2
70. If $2^{x}+2^{y}=2^{x+y}$, then the value of $\frac{d y}{d x}$ at $x=y=1$ is :
(1) 0
(2) -1
(3) 1
(4) 2
71. If $f(a-x)=f(x)$, then $\int_{0}^{a} x f(x) d x$ is equal to :
(1) $\frac{a}{2} \int_{0}^{a} f(x) d x$
(2) $a \int_{0}^{a} f(x) d x$
(3) $\frac{a^{2}}{2} \int_{0}^{a} f(x) d x$
(4) $\frac{2}{a} \int_{0}^{a} f(x) d x$
72. $\int_{-1}^{1} \sin ^{3} x \cdot \cos ^{2} x d x$ is equal to :
(1) $\frac{1}{2}$
(2) 1
(3) 2
(4) 0
73. The area of the region bounded by the curve $x^{2}=4 y$, line $x=2$ and x-axis is :
(1) 1
(2) $\frac{2}{3}$
(3) $\frac{4}{3}$
(4) $\frac{8}{3}$
74. The area enclosed between the curves $y=a x^{2}, x=a y^{2}(a>0)$ is 1 sq. unit. Then the value of a is :
(1) $\frac{1}{2}$
(2) $\frac{1}{3}$
(3) $\frac{1}{\sqrt{3}}$
(4) 1
75. If p and q are order and degree of differential equation $y^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+3 x\left(\frac{d y}{d x}\right)+x^{2} y^{2}=\sin x$, then :
(1) $p>q$
(2) $\frac{p}{q}=\frac{1}{2}$
(3) $p=q$
(4) $p<q$
76. The integrating factor of differential equation $\frac{d y}{d x}+\frac{1}{x} y=3 x$ is :
(1) x
(2) 0
(3) e^{x}
(4) $\frac{1}{x}$
77. The solution of differential equation $(\cos x) \cos y d x+(\sin x) \sin y d y=0$ is :
(1) $\tan x=c$
(2) $\cos x=c \sin y$
(3) $\sec x-\sec y=c$
(4) $\sin x=c \cos y$
78. The elimination of A and B from the equation $y^{2}=A x+B$ gives the differential equation of order :
(1) First
(2) Second
(3) Third
(4) Zero
79. If $\alpha=2 \hat{i}+3 \hat{j}-\hat{k}, \beta=-\hat{i}+2 \hat{j}-4 \hat{k}, \gamma=\hat{i}+\hat{j}+\hat{k}$, then $(\alpha \times \beta)$. $(\alpha \times \gamma)$ is cqual to
(1) 64
(2) 74
(3) -74
(4) -64
80. If \vec{a} and \vec{b} are two vectors such that $\vec{a} \cdot \vec{b}=0$ and $\vec{a} \times \vec{b}=\overrightarrow{0}$, then :
(1) either \vec{a} or \vec{b} is a null vector
(2) \vec{a} is parallel to \vec{b}
(3) \vec{a} is perpendicular to \vec{b}
(4) None of these
81. If $A=\{x, y\}$, then which of the following statement is true?
(1) $\phi \in A$
(2) $y \subseteq A$
(3) $\{y\} \in A$
(4) $\{x\} \subseteq A$
82. If A is any set, then :
(1) $A \cup A=A$
(2) $A \cup A=\phi$
(3) $A \cup A=\{A, \phi\}$
(4) $A \cup A=\{0\}$
83. In a class of 60 boys, there are 45 boys who play cards and 30 boys who play carrom. How many boys play cards only?
(1) 15
(2) 30
(3) 20
(4) 10
84. Which of the following functions is neither even nor odd ?
(1) $x^{2}+7$
(2) $x^{7}+2 x^{5}$
(3) $|x|+4$
(4) $x+2$
85. If $\mathrm{A}=\{1,3,5,7\}$ and $\mathrm{B}=\{2,5\}$, then the number of relations from A to B is :
(1) 64
(2) 128
(3) 256
(4) 512
86. If $\frac{\cos x}{a}=\frac{\cos (x+\theta)}{b}=\frac{\cos (x+2 \theta)}{c}=\frac{\cos (x+3 \theta)}{d}$, then $\frac{a+c}{b+d}$ is equal to :
(1) $\frac{a}{d}$
(2) $\frac{b}{c}$
(3) $\frac{c}{d}$
(4) $\frac{d}{a}$
87. If in a triangle $A B C, \tan A+\tan B+\tan C>0$, then the triangle is :
(1) Always acute angled triangle
(2) Always obtuse angled triangle
(3) Always equilateral triangle
(4) Nothing can be said about the type of triangle

PG(Hons)-EE-June, 2023/(Mathematics (Hons.)Five Year)(SET-X)/(D)
P. T. O.
88. The number of solutions of $\sum_{r=1}^{5} \cos r x=5$ in the interval $[0,2 \pi]$ is :
(1) 10
(2) 5
(4) 0
(3) 1
89. If $1+\sin \theta+\sin ^{2} \theta+\ldots \ldots \ldots \infty=4+2 \sqrt{3}, 0<\theta<\pi, \theta \neq \frac{\pi}{2}$, then :
(1) $\theta=\frac{\pi}{3}$
(2) $\theta=\frac{\pi}{6}$
(3) $\frac{\pi}{3}$ or $\frac{\pi}{6}$
(4) $\theta=\frac{\pi}{3}$ or $\frac{2 \pi}{3}$
90. If the multiplicative inverse of a complex number is $\frac{(\sqrt{3}+4 i)}{19}$, then the complex number itself is :
(1) $4-i \sqrt{3}$
(2) $\sqrt{3}+4 i$
(3) $4+i \sqrt{3}$
(4) $\sqrt{3}-4 i$
91. A linear function $Z=a x+b y$, where a, b are constants, which has to be maximized or minimized is called a linear :
(1) Subjective function
(2) Collective function
(3) Objective function
(4) None of these
92. Any point in the feasible region that gives the maximum or minimum value of the objective function is called an :
(1) Optical solution
(2) Optimal solution
(3) Practical solution
(4) None of these

PG(Hons)-EE-June, 2023/(Mathematics (Hons.)Five Year)(SET-X)/(D)

93. Ten eggs are drawn successively with replacement from a lot containing 10% defective eggs. Find the probability that there is at least one defective egg:
(1) $1-\frac{9^{10}}{10^{10}}$
(2) $1-\frac{9^{10}-1}{10^{10}}$
(3) $1-\frac{9^{9}}{10^{9}}$
(4) $1-\frac{9^{10}}{10^{9}}$
94. Let X be a random variable whose possible values $x_{1}, x_{2}, x_{3}, \ldots \ldots . ., x_{n}$ occur with probabilities $p_{1}, p_{2}, p_{3}, \ldots \ldots ., p_{n}$. The mean of random variable X is given by :
(1) $E(X)=\sum_{i=1}^{n} \frac{p_{i}}{x_{i}}$
(2) $E(X)=\sum_{i=1}^{n} \frac{x_{i}}{p_{i}}$
(3) $E(X)=\sum_{i=1}^{n}\left(p_{i}+x_{i}\right)$
(4) $E(X)=\sum_{i=1}^{n} p_{i} x_{i}$
95. A region is said to be convex, if the line segment joining any two arbitrary points of the region lies :
(1) Entirely within the region
(2) Entirely outside the region
(3) Anywhere within or outside the region
(4) None of these
96. If $P(n)$ is the statement, " $\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\ldots \ldots \ldots+\frac{1}{n(n+1)}=\frac{n}{n+1}$ ", where $n \in N$, then $P(2)$ is the statement $:$
(1) $\frac{1}{2}+\frac{1}{6}=\frac{2}{3}$
(2) $\frac{1}{1 \times 2}=\frac{1}{1+1}$
(3) $\frac{1}{1 \times 2}+\frac{1}{3 \times 4}=\frac{7}{12}$
(4) None of these
97. The solution of linear inequation $2 x+10 \geq 0$ is :
(1) $x \in(-5, \infty)$
(2) $x \in(-\infty, \infty)$
(3) $x \in[-5, \infty)$
(4) $x \leq-5$
98. Which of the following is not correct?
(1) $x \geq 4 \Rightarrow x-3 \geq 1$
(2) $x \leq y \Rightarrow-3 x \geq-3 y$
(3) $2 x-6 y \geq 0 \Rightarrow x \geq 3 y$
(4) $4 x \geq 8 \Rightarrow x \leq 2$
99. A company manufactures toys and its cost equation for a week is $C=300+1.5 x$ and its revenue equation is $R=2 x$, where x is the number of toys sold in a week. How many toys must be sold for the company to realize a profit?
(1) Between 500 and 600
(2) More than 600
(3) At most 550
(4) None of these
100. A sentence is a statement if it is:
(1) Always true
(2) Always false
(3) Either true or false but not both
(4) Sometimes true, sometimes false

PG(Hons)-EE-June, 2023/(Mathematics (Hons.)Five Year)(SET-X)/(D)

ANSWER KEYS OF MATHEMATICS (HONS.) 5 YEARS INTEGRATED COURSE FOR SESSION 2023-24

ANSWER KEYS OF MATHEMATICS (HONS.) 5 YEARS INTEGRATED COURSE FOR SESSION 2023-24

